
N o t e s :

Using CVS 1 of 18

Using CVS
C oncurrent V ersions System - http://www.cvshome.org/

Jeremy Mates <jmates@sial.org>

This presentation should be available somewhere on the sial.org website.

http://www.cvshome.org/

N o t e s :

Using CVS 2 of 18

The Road Map

1. What is CVS?

2. Anatomy of a Repository

3. Getting the Goodies

4. Working with Stuff

5. Issues & Caveats

6. Resources

Blah, blah blah.

N o t e s :

Using CVS 3 of 18

What is CVS?

• CVS tracks document evolution in a hierarchical archive.

• Evolved from RCS.

• Leading Open Source Version Control (VC) system.

• Relatively Operating System agnostic.

Many VC systems available today, e.g. RCS, SCCS, MS Visual SourceSafe,
VOODOO, etc. Some cost money, some don’t. Some are platform specific,
some not.

CVS is popular, free, and platform agnostic (heavy unix leanings, though).

N o t e s :

Using CVS 4 of 18

Why do I need Version Control?

• Who broke foo.pl?

• When was foo.pl broken?

• Can we revert foo.pl to a working version?

• I want to develop my own foo.pl ...

• ... and merge my changes back in ...

• There’s a bug in a old foo.pl, and the new foo.pl

is still experimental... can we fix the old one for them?

• And more!

N o t e s :

Using CVS 5 of 18

Anatomy of a Repository

• All CVS documents stored in a repository.

• Just a bunch of files and directories.

• Preferences in the repository, too:

$ ls -R /tmp/archive
/tmp/archive:
CVSROOT/

/tmp/archive/CVSROOT:
Emptydir/ config editinfo,v modules,v taginfo
checkoutlist config,v history notify taginfo,v
checkoutlist,v cvswrappers loginfo notify,v val-tags
commitinfo cvswrappers,v loginfo,v rcsinfo verifymsg
commitinfo,v editinfo modules rcsinfo,v verifymsg,v

The funny ,v files are RCS version control format files. They contain the
history of the document in a series of patches, as well as various other things
to make your life easier (e.g. tags).

N o t e s :

Using CVS 6 of 18

Creating a Repository

• A directory and a cvs command latter...

$ setenv CVSROOT /tmp/archive
$ mkdir -p $CVSROOT
$ cvs init

• CVS commands all begin with cvs, followed by a sub
command to do something, e.g. ‘init’ or ‘checkout’

• The init creates an empty, default repository in the
specified path, given by $CVSROOT, or the -d option:

$ mkdir -p /tmp/archive
$ cvs -d /tmp/archive init

For users of the Bourne-compatible shells (bash, ksh, zsh):

$ export CVSROOT=/tmp/archive

While I’m on the topic of shell differences, I might as well get a cheap shot in
at the csh-based shells:

ht tp : / /www.landf ie ld .com/faqs/unix-faq/shel l /csh-whynot /

CVS commands have the general format of:

cvs [global options] sub command [sub command options] [subcommand-
args]

Consult the documentation for all the various options and arguments...

http://www.landfield.com/faqs/unix-faq/shell/csh-whynot/

N o t e s :

Using CVS 7 of 18

Connecting to a CVS Repository

• Use checkout (co) to obtain a working copy
(“sandbox”) of a “module” in the repository:

$ cd /tmp
$ cvs -Q checkout CVSROOT
$ ls CVSROOT
CVS/ loginfo
checkoutlist modules
commitinfo notify
config rcsinfo
cvswrappers taginfo
editinfo verifymsg

• Modules are directories in the repository, or more...

CVS commands generally have both long and short forms. O’Reilly’s CVS
Pocket Reference has a nice table of the various commands and their short
names. For example, the following all create a sandbox for a module:

cvs checkout MODULE
cvs co MODULE
cvs get MODULE

N o t e s :

Using CVS 8 of 18

More ways to get stuff:

• Can also obtain a module across a network:

client$ setenv CVS_RSH /usr/bin/ssh
client$ setenv CVSROOT \

:ext:user@server:/tmp/archive
client$ cd /tmp
client$ cvs checkout CVSROOT

• Or via the CVS pserver, run from inetd(8):

client$ cvs -d \
:pserver:user@server:/tmp/archive \
checkout CVSROOT

N o t e s :

Using CVS 9 of 18

Creating Initial Modules

• Use the CVS import command (annoying) to import
existing sources.

• Or, checkout the entire repository, and use cvs add to
create new modules as needed.

• Modules are just directories in the repository.

• Modules can also be groups of modules/files if one
hacks up the CVSROOT/modules file.

To manually add a “perl-scripts” module to a repository, cleaning up after
ourselves:

$ mkdir ~/checkout && cd ~/checkout
$ cvs checkout .
cvs checkout: Updating .
cvs checkout: Updating CVSROOT
U CVSROOT/checkoutlist
U CVSROOT/commitinfo
U CVSROOT/config
U CVSROOT/cvswrappers
U CVSROOT/editinfo
U CVSROOT/loginfo
U CVSROOT/modules
U CVSROOT/notify
U CVSROOT/rcsinfo
U CVSROOT/taginfo
U CVSROOT/verifymsg
$ mkdir perl-scripts
$ cvs add perl-scripts
Directory /tmp/archive/perl-scripts added to the repository
$ cvs release -d .

N o t e s :

Using CVS 10 of 18

Adding files

• The cvs add command also does files:

$ cd /tmp
$ cvs -Q checkout perl-scripts
$ cd perl-scripts
$ ls
CVS/
$ touch foo.pl
$ cvs add foo.pl
cvs add: scheduling file `foo.pl' for addition
cvs add: use 'cvs commit' to add this file permanently
$ cvs commit -m “Added empty foo perl script.” foo.pl
RCS file: /tmp/archive/perl-scripts/foo.pl,v
done
Checking in foo.pl;
/tmp/archive/perl-scripts/foo.pl,v <-- foo.pl
initial revision: 1.1
done

cvs commit is actually quite clever; if no filenames are supplied, it will search
out and commit whatever files under your current path need committing.

cvs add is not so clever, and requires explicit file and/or directory names to
be added to the repository.

N o t e s :

Using CVS 11 of 18

Common CVS commands

• Use cvs commit to submit changed local files to the
central repository.

• Use cvs update to synchronize local copy (“sandbox”)
to repository.

• Use cvs diff to view differences between file
versions.

• Certain utilities support the common cvs commands
internally, e.g. the emacs VC Mode.

There’s a lot more CVS commands out there, but the above three will be used
all the time, as part of the update/hack-file/diff/commit routine:

$ cvs up
cvs update: Updating .
$ vi foo.pl
$ cvs up
cvs update: Updating .
M foo.pl
$ cvs diff -u foo.pl
(lots of output)
$ cvs commit -m "Added blah print."
cvs commit: Examining .
Checking in foo.pl;
/tmp/archive/perl-scripts/foo.pl,v <-- foo.pl
new revision: 1.2; previous revision: 1.1
done
$ cvs up
cvs update: Updating .

The -u for cvs diff produces the best output, and can be defaulted to with a
good ~/.cvsrc file. However, certain operating systems have a default diff
that does not support the unified output; these should be taken out and shot
(e.g. Solaris, at time of writing).

N o t e s :

Using CVS 12 of 18

Issues & Caveats

• File & directory structure hard to change (plan well
before adding new modules/files).

• Text orientation. Binary files are supported via ‘cvs
add -kb logo.gif’ but there is no “diff” support.

• Line orientation. Moved code is a delete from the
source and an add elsewhere.

• Syntax oblivious. White space changes for formatting
will be treated as a sweeping change.

N o t e s :

Using CVS 13 of 18

Multiple Developers

• CVS uses an optimistic merging model to allow
concurrent development.

• Can use edit and watch for more restrictive use.

• Communication is the key.

As opposed to RCS/SCCS, which use a locking model, where a checkout file
cannot be edited until the modified file is committed back in.

I have limited experience at present with multiple users in a CVS repository;
however, various projects like OpenBSD or those on SourceForge manage huge
trees with multiple developers, so it is workable...

N o t e s :

Using CVS 14 of 18

Advanced Stuff

• Blank templates can be created to base new
development off of:

$ touch blank.pl; cvs add -kk blank.pl
$ cvs commit -m “Default perl script template added.”

• CVS can keep track of “tags” on files, to associate
symbolic names (like “release-2001-02-27”) with a
group of files.

• Branches off the main line of development can be done
with tags, e.g. to apply a bugfix to a past release, or to
develop off in an experimental direction.

The blank perl script template I use is available at:

h t tp : / /www.s ia l .org /code/per l / scr ip ts /b lank.p l

The -kk option prevents CVS keyword expansion from taking place. Keywords
are special tags like Id or $Revision$ that generally get expanded out:

#!/usr/bin/perl
$Id: foo.pl,v 1.3 2001/02/27 22:05:43 jmates Exp $

print "blah\n";

You can also do spiffy things, like get revision numbers directly into simple
scripts. For instance, I use the following in my perl scripts to set a $VERSION
variable to be the current CVS revision:

my $VERSION; ($VERSION = '$Revision$ ') =~ s/[^0-9.]//g;

Branches are tricky, and I’ve only done them once or twice to bugfix prior
tagged versions. There is a lot of documentation out there on them, between
Cederqvist and the CVS Black Book.

http://www.sial.org/code/perl/scripts/blank.pl

N o t e s :

Using CVS 15 of 18

Scripting Stuff

• CVS has good support for scripting, through various
administrative files found under the CVSROOT module.

• CVS comes with some sample contrib scripts.

• Makefiles can also be inserted into the directory
structure to automate various testing, building, and CVS
commands:

TAGNAME = release
tag:
 @cvs tag -cfF $(TAGNAME)

For perl code, I have two shell scripts that will prevent a commit from
happening if the code is invalid, or the POD isn’t present or invalid:

h t tp : / /www.s ia l .org/code/shel l / scr ip ts /per l_podchecker .sh
ht tp: / /www.sia l .org/code/shel l /scr ipts /per l_syntax.sh

I also have a (kinda beta) script that regenerates a tarball from my skel
directory that I keep under CVS when the appropriate tag is applied to a file:

ht tp: / /www.sial .org/code/shel l /scr ipts /bui ld_profi le .sh

http://www.sial.org/code/shell/scripts/perl_podchecker.sh
http://www.sial.org/code/shell/scripts/perl_syntax.sh
http://www.sial.org/code/shell/scripts/build_profile.sh

N o t e s :

Using CVS 16 of 18

Resources

• CVS Homepage: http://www.cvshome.org/

• Documentation central: http://www.cvshome.org/docs/

• Open Source Development with CVS:
http://cvsbook.red-bean.com/

• CVS Pocket Reference:
http://www.oreilly.com/catalog/cvspr/

Another notable is the cvs2cl.pl script, for easy generation of GNU-style
changelogs (or XML output) from the cvs log output:

h t tp : / /www.red-bean .com/cvs2c l /

Be sure to spend some time under the docs area on the cvshome site; it has
links to a dearth of information, including the manual and FAQ;

h t tp : / /www.cvshome.org /docs /manua l /
ht tp : / /www.cvshome.org/docs/ infopages .html

http://www.cvshome.org/
http://www.cvshome.org/docs/
http://cvsbook.red-bean.com/
http://www.oreilly.com/catalog/cvspr/
http://www.red-bean.com/cvs2cl/
http://www.cvshome.org/docs/manual/
http://www.cvshome.org/docs/infopages.html

N o t e s :

Using CVS 17 of 18

Something broke!

• To revert a file to a previous revision, one must run log
on the file to figure out which version was the last
working one. This may involve committing a currently
broken file first:

$ cvs log foo.pl | less

$ cvs diff -r 1.1 -r 1.2 foo.pl

$ cvs update -j 1.2 -j 1.1 foo.pl

$ cvs commit -m “Reverted bad 1.2 to 1.1.”

This probably should be organized better, but hey...

N o t e s :

Using CVS 18 of 18

A few random commands...

• The cvs tag command can be used to mark a project
that has just shipped:

$ cvs tag -fFc foo-project-2001-02-27

• To “tag” a modified file with a new revision, clearing the
sticky bit that gets set afterwards:

$ cvs commit -r 2.0 foo.pl
$ cvs update -Ad

Some more random commands...

