Using CVS 1 of 18

Using CVS

Concurrent Versions System - http://www.cvshome.org/

Jeremy Mates <jmates@sial.org>

http://www.cvshome.org/

Using CVS

2 of 18

The Road Map
1. What is CVS?

2. Anatomy of a Repository
3. Getting the Goodies

4. Working with Stuff

5. Issues & Caveats

6. Resources

Using CVS 3 of 18

What is CVS?

» CVS tracks document evolution in a hierarchical archive.
» Evolved from RCS.
e Leading Open Source Version Control (VC) system.

* Relatively Operating System agnostic.

Using CVS 4 of 18

Why do | need Version Control?
Who broke f oo. pl ?

When was f 0o. pl broken?

Can we revert f 0o. pl to a working version?

| want to develop my own f oo. pl ...

... and merge my changes back in ...
 There’'s a bug in a old f 0o. pl , and the new f oo. pl
Is still experimental... can we fix the old one for them?

« And more!

Using CVS 5 of 18

Anatomy of a Repository

« All CVS documents stored in a repository.
« Just a bunch of files and directories.

* Preferences in the repository, too:

$ Is -R /tnp/archive
[t np/ ar chi ve:

CVSROOT/

/ t nmp/ ar chi ve/ CVSROOT:

Enpt ydi r/ config editinfo,v nodules,v taginfo
checkout | i st config,v hi story notify tagi nfo,v
checkoutlist,v cvswappers | ogi nfo notify,v val-tags
conm tinfo cvsw appers,v loginfo,v rcsinfo veri fynsg

conmtinfo,v editinfo nodul es rcsinfo,v verifynsg,v

Using CVS 6 of 18

Creati ng a Repository

» A directory and a cvs command latter...

$ setenv CVSROOT /tnp/ archive
$ nkdir -p $CVSROOT
$cvsinit

« CVS commands all begin with cvs, followed by a sub
command to do something, e.g. ‘i nit’ or ‘checkout’

e The i nit creates an empty, default repository in the
specified path, given by $CVSROQOT, or the - d option:

$ nkdir -p /tnp/archive
$ cvs -d /tnp/archive init

http://www.landfield.com/faqs/unix-faq/shell/csh-whynot/

Using CVS 7 of 18

Connecting to a CVS Repository

 Use checkout (co) to obtain a working copy
(“sandbox”) of a “module” in the repository:

$ cd /tnp
$ cvs -Q checkout CVSROOT
$ Is CVSROOT

CvS/ | ogi nfo
checkoutlist nodul es
comm tinfo notify
config rcsinfo
CVSW appers tagi nfo
editinfo verifynsg

 Modules are directories in the repository, or more...

Using CVS 8 of 18

More ways to get stuff:

e Can also obtain a module across a network:

client$ setenv CVS RSH /usr/bin/ssh
client$ setenv CVSROOT \

. ext:user @erver:/tnp/archive
client$ cd /tnp
client$ cvs checkout CVSROOT

e Or via the CVS pserver, run from inetd(8):

client$ cvs -d \
. pserver:user @erver:/tnp/archive \
checkout CVSROOT

Using CVS 9 of 18

Creating Initial Modules

 Use the CVS i nport command (annoying) to import
existing sources.

* Or, checkout the entire repository, and use cvs add to
create new modules as needed.

 Modules are just directories in the repository.

 Modules can also be groups of modules/files if one
hacks up the CVSROOT/ nodul es file.

Using CVS

10 of 18

Adding files
e The cvs add command also does files:

$cd/tnmp

$ cvs -Q checkout perl-scripts

$ cd perl-scripts

$1s

Vs

$ touch foo. pl

$ cvs add foo. pl

cvs add: scheduling file foo.pl' for addition

cvs add: use 'cvs commt' to add this file permanently
$ cvs coomit -m*“Added enpty foo perl script.” foo.pl
RCS file: /tnp/archivelperl-scripts/foo.pl,v

done

Checking in foo.pl;

/tnp/ archi vel/ perl-scripts/foo.pl,v <-- foo.pl
initial revision: 1.1

done

Using CVS 11 of 18

r

Common CVS commands

« Use cvs comm t to submit changed local files to the
central repository.

« Use cvs updat e to synchronize local copy (“sandbox”)
to repository.

e Use cvs di ff to view differences between file
versions.

o Certain utilities support the common cvs commands
internally, e.g. the emacs VC Mode.

Using CVS 12 of 18

Issues & Caveats

» File & directory structure hard to change (plan well
before adding new modules/files).

e Text orientation. Binary files are supported via ‘cvs
add -kb 1 ogo. gif’ but there is no “diff” support.

* Line orientation. Moved code is a delete from the
source and an add elsewhere.

« Syntax oblivious. White space changes for formatting
will be treated as a sweeping change.

Using CVS 13 of 18

Multiple Developers

* CVS uses an optimistic merging model to allow
concurrent development.

e Can use edit and wat ch for more restrictive use.

« Communication is the key.

Using CVS 14 of 18

Advanced Stuff

* Blank templates can be created to base new
development off of:

$ touch blank.pl; cvs add -kk bl ank. pl
$ cvs commit -m*“Default perl script tenplate added.”

« CVS can keep track of “tags” on files, to associate
symbolic names (like “release-2001-02-27") with a
group of files.

 Branches off the main line of development can be done
with tags, e.g. to apply a bugfix to a past release, or to
develop off in an experimental direction.

http://www.sial.org/code/perl/scripts/blank.pl

Using CVS 15 of 18

Scri pting Stuff

 CVS has good support for scripting, through various
administrative files found under the CVSROOT module.

« CVS comes with some sample contrib scripts.

» Makefiles can also be inserted into the directory
structure to automate various testing, building, and CVS
commands:

TAGNAME = rel ease
t ag:
@vs tag -cfF $(TAGNAME)

http://www.sial.org/code/shell/scripts/perl_podchecker.sh
http://www.sial.org/code/shell/scripts/perl_syntax.sh
http://www.sial.org/code/shell/scripts/build_profile.sh

Using CVS 16 of 18

Resources

« CVS Homepage: http://www.cvshome.org/

« Documentation central: http://www.cvshome.org/docs/

* Open Source Development with CVS:
http://cvsbook.red-bean.com/

 CVS Pocket Reference:
http://www.oreilly.com/catalog/cvspr/

http://www.cvshome.org/
http://www.cvshome.org/docs/
http://cvsbook.red-bean.com/
http://www.oreilly.com/catalog/cvspr/
http://www.red-bean.com/cvs2cl/
http://www.cvshome.org/docs/manual/
http://www.cvshome.org/docs/infopages.html

Using CVS 17 of 18

$

$
$
$

Somethi ng broke!

 To revert a file to a previous revision, one must run log
on the file to figure out which version was the last
working one. This may involve committing a currently
broken file first:

cvs log foo.pl | less
cvs diff -r 1.1 -r 1.2 foo.pl
cvs update -j 1.2 -j 1.1 foo.pl

cvs commt -m“Reverted bad 1.2 to 1.1."

Using CVS 18 of 18

A few random commands...

 The cvs tag command can be used to mark a project
that has just shipped:

$ cvs tag -fFc foo-project-2001-02-27

 To “tag” a modified file with a new revision, clearing the
sticky bit that gets set afterwards:

$ cvs commt -r 2.0 foo.pl
$ cvs update -Ad

