
1

Dr. U. Assmann, Software
Engineering 1

Configuration Management

Dr. U. Aßmann
Research Center for Integrational Software

Engineering

Dr. U. Assmann, Software Engineering 2

Content

� Basic Concepts
� Components
� Component selection
� Collaboration
� Process Support
� Tools

Dr. U. Assmann, Software
Engineering 3

Basic Concepts

Dr. U. Assmann, Software Engineering 4

Goal

� Constructing software from components and frameworks
� Have several products, but a large reuse
� Have several versions

� A new version every 2 years

� Have several variants
� Portability

� Manage work concurrently “programming-in-the-many”

2

Dr. U. Assmann, Software Engineering 5

Software Configuration

Components

Human
Collaboration

Process

Component Model

Protection

Build support
Process support

Version model

Variant model

Merging

Component Selection

Version Selection

Variant Selection

Component Selection

Workspace
Product model

Composition languages

Repository

Remote work
Consistency control

Dr. U. Assmann, Software Engineering 6

History

� SCCS (Rochkind) 1985
� Files in versions
� Deltas (diffs) between versions
� Locking for collaborative work

� Make (Feldman) 1985
� RCS (Tichy) 1987
� Shape (Mahler) 1992
� Feature Logic (Zeller, Snelting) 1995

Dr. U. Assmann, Software Engineering 7

The Version/Variant Universe

Versions
Variants

Objects/Components

Dr. U. Assmann, Software Engineering 8

Alternative View

Historical
(Versions)

Logical (Variants)

Cooperative

3

Dr. U. Assmann, Software Engineering 9

The Variant Parameter Universe

� A n-dimensional space (with n parameters of k variants)

Parameter
A

Parameter
B

Parameter C
Dr. U. Assmann, Software Engineering 10

The Variant Parameter Universe

� A n-dimensional space (with n parameters of k variants)

OS

Processor

Window system

NT
Win

Linux
Mac

X
Sun

News

i486
Alpha

PowerPC

Dr. U. Assmann, Software Engineering 11

The Version Universe

� A branching tree of unknown depth
� Every new modification either generates a new child
� Or a branch 0.2

0.3

1.0

0.2.1.1

0.3.1.1

0.3.1.2 1.1

Dr. U. Assmann, Software
Engineering 12

Components in Repositories and
Workspaces

4

Dr. U. Assmann, Software Engineering 13

Components

� Component model
� Files (main case, unfortunately)
� Objects
� Documents
� Often untyped!

� Version model
� Branching

� Variant model
� N-dimensional space
� Often realized by conditional compilation with #ifdef’s

� Baseline
� Identify a product as a set of components with specific version and

variant configuration

Dr. U. Assmann, Software Engineering 14

Repository and Workspace

� To allow programmer modifications, SCM tools always
maintain a repository and programmer-specific
workspaces

� Repository realization:
� File (SCCS, RCS)
� Set of files
� Tree of files (cvs, subversion)
� Object base (Damokles)
� Data base (ClearCase)
� Graph of files
� Special repository on file system level (odin, prcs)

Dr. U. Assmann, Software Engineering 15

Files As Components (SCCS, RCS)

� The earliest configuaration management tools provided versioning
on files.

� There is a working version and a repository version of the file
� A change that is commited from the working version to the

repository file is called a delta
� Users may “undo” changes/deltas and retrieve old versions with

version identifiers
� 0.1, 0.2, 0.3, …., 1.0, 1.1, …. 2.0, ….<current>
� If two programmers change concurrently, version numbers branch:
� 1.0, 1.1,

� 1.2.1.1, 1.2.1.2, 1.2.1.3, …, 1.2.1.7
� 1.2.2.1, 1.2.2.2

� Two branches may be also merged

Dr. U. Assmann, Software Engineering 16

RCS commands

� Checkin (ci)
� Create a repository file or update it with a working version

� Checkout (co)
� Create a working version from a repository file

� Rcsdiff
� Diff two versions

� Rcsmerge
� Merge two versions

� RCS stores the newest file as such in the repository file and
recalculates older versions by undoing deltas (reverse delta
technique)

� SCCS stores the oldest file and recalculates newer versions by
applying deltas (forward delta technique) Usually slower!

5

Dr. U. Assmann, Software Engineering 17

RCS symbolic versions

� RCS can maintain a baseline, I.e., a set of versions of
files that belong together
� And assign the baseline a symbolic name, I.e., “newYork”

� RCE (extended RCS) can treat trees and has a visual
user interface

Dr. U. Assmann, Software Engineering 18

View Pathing on Component Trees
(nmake, gmake)

� Programmers have a view on the test version which has
a view on the official version

.......

.......

.......
.......

.......

.......
.......

.......

.......

Official
(repository)

testProgrammer
workspace
(development)

Dr. U. Assmann, Software Engineering 19

Simple View Pathing on Trees (cvs)

� Programmers have a view on the official version
� All files are physically copied

.......

.......

.......
.......

.......

.......

Development
workspace

repository

Commit
(checkin)

update
(checkout)

Dr. U. Assmann, Software Engineering 20

Operations in CVS

� Checkout
� Copy a repository (tree) into a development workspace tree.
� Cvs memorizes the repository location, also on the internet
� This allows internet collaboration
� All open source projects use CVS

� Update
� Update the workspace with newer contents of the repository

� Checkin
� Copy a development workspace into the repository. Merge

differences.
� Diff

� Differenciate the workspace to the repository

6

Dr. U. Assmann, Software Engineering 21

Optimistic Strategy

� CVS uses optimistic commit, i.e., repositories are not
locked

� During update operations, it is hoped that the newer
contents of the repository can be merged with the
workspace easily (that’s the optimism)

� If two programmers changed the same line in a file
differently, a conflict occurs that cannot be merged
automatically

� The merged file has to be edited by hand to eliminate
the “diffed” lines.

Dr. U. Assmann, Software
Engineering 22

Component Selection

Dr. U. Assmann, Software Engineering 23

Component Selection

� ..also called Artefact or Variant Selection
� Component selection selects a set of components with version and

variant from a repository.
� The selected items form a partial baseline or a complete baseline.
� Selection language:

� Files with piece lists (enumeration of files and version numbers) (cvs,
prcs)

� Attributes of components (variants, versions, branches, symbolic
names, states “locked” “frozen”, …)

� Pattern matching on attributes
� Logic language to build expressions on patterns

� Set based language (Adele)
� Feature logic (Zeller ICE)

� The more powerful the language is the better conflicts and
inconsistencies can be avoided!

Dr. U. Assmann, Software Engineering 24

Adele

� Estublier, Universite de Grenoble
� Entity-relationship database
� Dependency relations
� Symbolic variant names
� Set expression based variant selection on attribute

values, constraints, and preferences
� Query example

Baseline = (window-system=x11 �
(current � status � experimental))

� Check on incomplete and inconsistent configurations

7

Dr. U. Assmann, Software Engineering 25

Shapetools

� Lampen, Mahler, University of Berlin
� On top of the UNIX file system
� Or the object-oriented data base DAMOKLES

� Attributed file system, I.e., nicely integrated with OS
� Variants are expressed as attributes

� Name=myfile, type=c, generation=4, revision=3.0, state=saved,
mode=06444, testlevel=low, project=newYork

� Files have states busy, saved, proposed, published, accessed, frozen
� Configuration selection by attribute patterns

� , expresses AND ; expresses OR . expresses end-of-rule:
doAnAction:

*.c, attr(author,andy), attr(state, busy) ;
*.c, attr(mode=755), attrmax(version).

Dr. U. Assmann, Software Engineering 26

ICE

� ICE builds on feature logic (A. Zeller)
� In feature logic terms with attributes

screen1 = [object:screen, resolution:high, speed=high]
screen2 = [object:screen, resolution:medium, speed=low]

� Query example
Baseline = [window-system:x11,

{current:���, status: ~ experimental}

� Feature logic unification and resolution can be used for
deduction

� Easy consistency checking

Dr. U. Assmann, Software
Engineering 27

Collaboration

Dr. U. Assmann, Software Engineering 28

Collaboration Strategies

� Pessimistic:
� Programmer has to lock parts or the whole repository
� Others may read, but not change
� Too restrictive for groups

� Optimistic:
� Updates are allowed speculatively
� Merge problems must be solved by hand
� Almost all tools are now optimistic
� Only way for internet based open source projects

8

Dr. U. Assmann, Software Engineering 29

Combination with Regression Tests

� A regression test feeds a product with a large test suite,
and compares the results with that of the previous
version

� Regression tests are often poorly supported by SCM
tools

Dr. U. Assmann, Software Engineering 30

Internet Development

� Cvs has a browser interface, cvsweb
� That is the basis of almost all large open source projects

now
� Large sites offer space for open source projects and use

cvs as the base configuration tool
� www.sourceforge.net

Dr. U. Assmann, Software
Engineering 31

Process Support

Dr. U. Assmann, Software Engineering 32

Build Support

� Main tool: make (Feldman 1975)
� Exists in about 30 variants
� Gmake (gnu) is one of the powerful ones
� Cook, odin, are other nice ones

� Rule based
� If component A is newer than its dependent component B
� Then redo B’s production

� Lazy system builds
� Systems are rebuilt (recompiled, relinked, reconfigured) only if

something has changed

9

Dr. U. Assmann, Software Engineering 33

Make as Wavefront

� It builds a graph of
dependencies between
components from the rules
� Annotates the actions from

the rule to the edges

� That must be acyclic
� Make detects which nodes in

the graph have changed, I.e.,
are newer as their successors

� And then executes a wavefront
on the dag
� Executing the production

actions annotated to an edge

Base
components

Product

changed

Dr. U. Assmann, Software Engineering 34

Auto Configuration

� Gnu autoconf is a makefile generator
� Generates a configure script
� configure generates at installation time makefiles for different

machines, operating systems, environments automatically

� Based on macro processing and a macro library
� Other tools

� Amake
� Perl tools

Dr. U. Assmann, Software
Engineering 35

Other Tools

Dr. U. Assmann, Software Engineering 36

PRCS

� Hilfinger, Berkeley
� Is a nice improvement of cvs
� Usually faster since after a commit it does not update

workspace files (which cvs does)
� Maintains information about the product centrally in a

project file *.prj
� Simpler management of the projects
� Internet version is being worked on

10

Dr. U. Assmann, Software Engineering 37

Rational ClearCase

� One of the market leaders in commercial SCM
� Good quality control over complete projects
� Stores attributes with files
� Files are stored in a database
� Support of subsystems (packages): identifiers, releases
� Activity table for merge of subsystems
� Smart recompilation of parts

Dr. U. Assmann, Software Engineering 38

Subversion

� Newest hit of the internet open source projects
� http://subversion.tigris.net
� Allows everything based on html browsers
� Fully internet based
� Automatic conversion from cvs

Dr. U. Assmann, Software Engineering 39

Literature

� J. Estublier. Software Configuration Management: A Roadmap.
Future of Software Engineering, Limerick, Ireland. ACM 2000.

� A. Midha. Software Configuration Management for the 21st Century.
Bell Labs Technical Journal 1997.

� S. Dart. Concepts in Configuration Management Systems. CMU.
� A. Zeller. Unified Versioning through Feature Logic. ACM

transactions on Software Engineering and Methodology. Vol 6, No
4, 1997.

� A. Mahler, A. Lampen. An Integrated Toolset for Engineering
Software Configurations. IEEE Sup. On Practical Software
Development Environments. SE Notes 13, No 5.

� R. Conradi, B. Westfechtel. Version Models for Software
Configuration Management. ACM Transactions on Programmming
Languages and Systems.

