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Basic Concepts
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Goal

� Constructing software from components and frameworks
� Have several products, but a large reuse 
� Have several versions 

� A new version every 2 years  

� Have several variants  
� Portability

� Manage work concurrently “programming-in-the-many”
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Software Configuration
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History

� SCCS (Rochkind) 1985
� Files in versions
� Deltas (diffs) between versions
� Locking for collaborative work

� Make (Feldman) 1985
� RCS (Tichy) 1987
� Shape (Mahler) 1992
� Feature Logic (Zeller, Snelting) 1995
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The Version/Variant Universe

Versions
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Dr. U. Assmann, Software Engineering 8

Alternative View
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The Variant Parameter Universe

� A n-dimensional space (with n parameters of k variants)

Parameter
A

Parameter
B

Parameter C
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The Variant Parameter Universe

� A n-dimensional space (with n parameters of k variants)

OS
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Linux
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X
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PowerPC
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The Version Universe

� A branching tree of unknown depth
� Every new modification either generates a new child
� Or a branch 0.2

0.3

1.0

0.2.1.1

0.3.1.1

0.3.1.2 1.1
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Components in Repositories and 
Workspaces
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Components

� Component model
� Files (main case, unfortunately)
� Objects
� Documents
� Often untyped!

� Version model
� Branching

� Variant model
� N-dimensional space
� Often realized by conditional compilation with #ifdef’s

� Baseline
� Identify a product as a set of components with specific version and 

variant configuration
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Repository and Workspace

� To allow programmer modifications, SCM tools always 
maintain a repository and programmer-specific 
workspaces

� Repository realization:
� File (SCCS, RCS)
� Set of files
� Tree of files (cvs, subversion)
� Object base (Damokles)
� Data base (ClearCase)
� Graph of files 
� Special repository on file system level (odin, prcs)
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Files As Components (SCCS, RCS)

� The earliest configuaration management tools provided versioning 
on files.

� There is a working version and a repository version of the file
� A change that is commited from the working version to the 

repository file is called a delta
� Users may “undo” changes/deltas and retrieve old versions with 

version identifiers
� 0.1, 0.2, 0.3, …., 1.0, 1.1, …. 2.0, ….<current>
� If two programmers change concurrently, version numbers branch:
� 1.0, 1.1, 

� 1.2.1.1, 1.2.1.2, 1.2.1.3, …, 1.2.1.7
� 1.2.2.1, 1.2.2.2

� Two branches may be also merged
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RCS commands

� Checkin (ci)
� Create a repository file or update it with a working version

� Checkout (co)
� Create a working version from a repository file

� Rcsdiff
� Diff two versions 

� Rcsmerge
� Merge two versions

� RCS stores the newest file as such in the repository file and 
recalculates older versions by undoing deltas (reverse delta 
technique)

� SCCS stores the oldest file and recalculates newer versions by 
applying deltas (forward delta technique) Usually slower!
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RCS symbolic versions

� RCS can maintain a baseline, I.e., a set of versions of 
files that belong together
� And assign the baseline a symbolic name, I.e., “newYork”

� RCE (extended RCS) can treat trees and has a visual 
user interface
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View Pathing on Component Trees 
(nmake, gmake)

� Programmers have a view on the test version which has 
a view on the official version

.......

.......

.......
.......

.......

.......
.......
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(development)
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Simple View Pathing on Trees (cvs)

� Programmers have a view on the official version
� All files are physically copied

.......

.......

.......
.......

.......

.......

Development
workspace

repository

Commit
(checkin)

update
(checkout)
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Operations in CVS

� Checkout
� Copy a repository (tree) into a development workspace tree.
� Cvs memorizes the repository location, also on the internet
� This allows internet collaboration
� All open source projects use CVS

� Update
� Update the workspace with newer contents of the repository

� Checkin
� Copy a development workspace into the repository. Merge 

differences. 
� Diff

� Differenciate the workspace to the repository
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Optimistic Strategy

� CVS uses optimistic commit, i.e., repositories are not 
locked

� During update operations, it is hoped that the newer 
contents of the repository can be merged with the 
workspace easily (that’s the optimism)

� If two programmers changed the same line in a file 
differently, a conflict occurs that cannot be merged 
automatically

� The merged file has to be edited by hand to eliminate 
the “diffed” lines.
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Component Selection
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Component Selection

� ..also called Artefact or Variant Selection 
� Component selection selects a set of components with version and

variant from a repository.
� The selected items form a partial baseline or a complete baseline.
� Selection language:

� Files with piece lists (enumeration of files and version numbers) (cvs, 
prcs)

� Attributes of components (variants, versions, branches, symbolic
names, states “locked” “frozen”, …)

� Pattern matching on attributes
� Logic language to build expressions on patterns 

� Set based language (Adele)
� Feature logic (Zeller ICE)

� The more powerful the language is the better conflicts and 
inconsistencies can be avoided!

Dr. U. Assmann, Software Engineering 24

Adele

� Estublier, Universite de Grenoble
� Entity-relationship database
� Dependency relations
� Symbolic variant names
� Set expression based variant selection on attribute 

values, constraints, and preferences
� Query example

Baseline = (window-system=x11 �
(current � status � experimental))

� Check on incomplete and inconsistent configurations
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Shapetools

� Lampen, Mahler, University of Berlin
� On top of the UNIX file system
� Or the object-oriented data base DAMOKLES

� Attributed file system, I.e., nicely integrated with OS
� Variants are expressed as attributes

� Name=myfile, type=c, generation=4, revision=3.0, state=saved, 
mode=06444, testlevel=low, project=newYork

� Files have states busy, saved, proposed, published, accessed, frozen
� Configuration selection by attribute patterns

� , expresses AND  ; expresses OR  . expresses end-of-rule:
doAnAction:

*.c, attr(author,andy), attr(state, busy) ; 
*.c, attr(mode=755), attrmax(version).
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ICE

� ICE builds on feature logic (A. Zeller)
� In feature logic terms with attributes

screen1 = [object:screen, resolution:high, speed=high]
screen2 = [object:screen, resolution:medium, speed=low]

� Query example
Baseline = [window-system:x11, 

{current:���, status: ~ experimental}

� Feature logic unification and resolution can be used for 
deduction

� Easy consistency checking
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Collaboration

Dr. U. Assmann, Software Engineering 28

Collaboration Strategies

� Pessimistic:
� Programmer has to lock parts or  the whole repository
� Others may read, but not change
� Too restrictive for groups

� Optimistic:
� Updates are allowed speculatively
� Merge problems must be solved by hand
� Almost all tools are now optimistic
� Only way for internet based open source projects
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Combination with Regression Tests

� A regression test feeds a product with a large test suite, 
and compares the results with that of the previous 
version

� Regression tests are often poorly supported by SCM 
tools
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Internet Development

� Cvs has a browser interface, cvsweb
� That is the basis of almost all large open source projects 

now
� Large sites offer space for open source projects and use 

cvs as the base configuration tool
� www.sourceforge.net
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Process Support 
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Build Support

� Main tool: make (Feldman 1975)
� Exists in about 30 variants
� Gmake (gnu) is one of the powerful ones
� Cook, odin, are other nice ones

� Rule based
� If component A is newer than its dependent component B 
� Then redo B’s production

� Lazy system builds
� Systems are rebuilt (recompiled, relinked, reconfigured) only if 

something has changed
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Make as Wavefront

� It builds a graph of 
dependencies between 
components from the rules
� Annotates the actions from 

the rule to the edges

� That must be acyclic
� Make detects which nodes in 

the graph have changed, I.e., 
are newer as their successors

� And then executes a wavefront 
on the dag
� Executing the production 

actions annotated to an edge

Base
components

Product

changed
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Auto Configuration

� Gnu autoconf is a makefile generator
� Generates a configure script
� configure generates at installation time makefiles for different 

machines, operating systems, environments automatically

� Based on macro processing and a macro library
� Other tools

� Amake
� Perl tools
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Other Tools
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PRCS 

� Hilfinger, Berkeley
� Is a nice improvement of cvs
� Usually faster since after a commit it does not update 

workspace files (which cvs does)
� Maintains information about the product centrally in a 

project file *.prj
� Simpler management of the projects
� Internet version is being worked on
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Rational ClearCase

� One of the market leaders in commercial SCM
� Good quality control over complete projects
� Stores attributes with files
� Files are stored in a database
� Support of subsystems (packages): identifiers, releases
� Activity table for merge of subsystems
� Smart recompilation of parts
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Subversion

� Newest hit of the internet open source projects
� http://subversion.tigris.net
� Allows everything based on html browsers
� Fully internet based
� Automatic conversion from cvs

Dr. U. Assmann, Software Engineering 39

Literature

� J. Estublier. Software Configuration Management: A Roadmap. 
Future of Software Engineering, Limerick, Ireland. ACM 2000.

� A. Midha. Software Configuration Management for the 21st Century. 
Bell Labs Technical Journal 1997.

� S. Dart. Concepts in Configuration Management Systems. CMU.
� A. Zeller. Unified Versioning through Feature Logic. ACM 

transactions on Software Engineering and Methodology. Vol 6, No 
4, 1997. 

� A. Mahler, A. Lampen. An Integrated Toolset for Engineering 
Software Configurations. IEEE Sup. On Practical Software 
Development Environments. SE Notes 13, No 5.

� R. Conradi, B. Westfechtel. Version Models for Software 
Configuration Management. ACM Transactions on Programmming 
Languages and Systems.


