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Read chapter 1 (“Formal Logic”) and complete 
the following problems to hand in: 
 
p30 (§1.2): 1, 4, 6, 12 
p41 (§1.3): 4a, 8b, 9a, 12a, 15c, 16a 
p56 (§1.4): 2, 4, 9, 17 



§1.2 Propositional Logic 
 
1. Justify each step in the proof sequence of 
 
  [A → (B ∨  C)] ∧  B’ ∧  C’ → A’ 
 

1. A → (B ∨  C)  hyp 
2. B’   hyp 
3. C’   hyp 
4. B’ ∧  C’   con, 2, 3 
5. (B ∨  C)’   DeMorgan, 4 
6. A’   mp, 1, 5 

 
4. Use propositional logic to prove that the argument is valid: 
 
  (A → B) ∧  [A → (B → C)] → (A → C) 
 

1. A → B   hyp 
2. A → (B → C)  hyp 
3. A   hyp 
4. B → C   mp, 3, 2 
5. B   mp, 1, 3 
6. C   mp, 4, 5 

 
6. Use propositional logic to prove that the argument is valid: 
 
  A’ ∧  (A ∨  B) → B 
 

1. A’   hyp 
2. A ∨  B   hyp 
3. A’ → B   imp, 2 
4. B   mp, 1, 3 

 
12.  Use propositional logic to prove that the argument is valid: 
 
   (P ∨  Q) ∧  P’ → Q 
 

1. P ∨  Q   hyp 
2. P’   hyp 
3. P’ → Q   imp, 1 
4. Q   mp, 2, 3 

 



§1.3 Quantifiers, Predicates, and Validity 
 
4a. Find an interpretation in which it is true, and one in which it is false: 
 
 (∀ x) ( [A(x) ∨  B(x) ] ∧  [A(x) ∧  B(x)]’ ) 
 

Domain = all dinosaurs 
   
 True: A(x) = dinosaur had two legs 
  B(x) = dinosaur had four legs  
 

All dinosaurs had two legs or four legs, and no dinosaurs had both four legs and two legs. 
 

False: A(x) = dinosaur eats meat 
  B(x) = dinosaur eats plants 
 

All dinosaurs ate meat or ate plants, and no dinosaurs ate both meat and plants.  
(Ornitholestes was believed to be an omnivore.) 

 
8b. Using the predicate symbols shown and appropriate quantifiers, write each English language 

statement as a predicate wff. 
 

J(x) is “x is a judge.” 
L(x) is “x is a lawyer.” 
W(x) is “x is a woman.” 
C(x) is “x is a chemist.” 
A(x,y) is “x admires y.” 

 
 “No woman is both a laywer and a chemist.” 
 

[ (∃ x)(W(x) ∧  L(x) ∧  C(x)) ]’ 
 
9a. Using the predicate symbols shown and appropriate quantifiers, write each English language 

statement as a predicate wff. 
 

C(x) is “x is a Corvette.” 
F(x) is “x is a Ferarri.” 
P(x) is “x is a Porche.” 
S(x,y) is “x is slower than y.” 

 
“Nothing is both a Corvette and a Ferrari.” 
 

(∃ x)(C(x) → F(x)’) 
 
12a. Give English language translations of the following wffs if 
 

L(x,y) is “x loves y.” H(x) is “x is handsome.” 
M(x) is “x is a man.” j is “John.” 
P(x) is “x is pretty.” k is “Kathy.” 
W(x) is “x is a woman.”  

 
H(j) ∧  L(k,j) 

 
“John is handsome and is loved by Kathy.”  (Whether or not the love is unrequited is not 
addressed by the wff.) 



 
15c. Explain why each wff is valid: 
 

 (∃ x) (∀ y) P(x,y) → (∀ y) (∃ x) P(x,y) 
 

Since the existence of the x was stated prior to and unpredicated on any qualification of y, x’s 
existence may be taken as unrelated to the scope of y, up to and including universal scope.  
Moreover, the antecedent of the implication states as hypothesis that the known x has the 
relationship P(x,y) for every possible y.  Since the scope of y is universal, then it is a tautology that 
the same x, whose existence has already been hypothesized, will therefore still exist in the same 
relationship P(x,y) for every y. 

 
With regards to last week’s class discussion, here is my reasoning for believing that the converse 
does not necessarily hold true, ie: 

  (∀ y) (∃ x) P(x,y) 
Ñ

 (∃ x) (∀ y)  P(x,y) 

The domain is Gilligan’s Island, which featured three women (Ginger, Mary Anne, and Mrs. 
Howe) and four men (Gilligan, Skipper, Professor, and Mr. Howe). 

 
 Let x = “a man.” 
 Let y = “a woman.” 

Let P(x,y) = “Man x has a lifelong and monogomous relationship with woman y.” 
 

(∀ y) (∃ x) P(x,y) translates as “For every woman on Gilligan’s Island, there exists a man on the 
island with whom she has a monogomous and lifelong relationship.” 

(∃ x) (∀ y)  P(x,y) translates as “There is a man on Gilligan’s Island who has a monogonous and 
lifelong relationship with every woman on the island.” 

 
Clearly, (∀ y) (∃ x) P(x,y) could be true (personally, I’d match up Gilligan with Mary Anne and 
Ginger with the Professor -), yet would certainly not imply (∃ x) (∀ y)  P(x,y) – which is 
impossible anyway. 

 
To take another example from pop culture (this time, a song from the 80’s rock group Poison) the 
bromide “every rose has its thorn” does not imply “there is a rose for every thorn” – some bristles 
are found lurking in thorny math problems!  

 
16a. Give interpretations to prove that each of the following wffs is not valid: 
 

(∃ x)A(x) ∧  (∃ x)B(x) → (∃ x)[ A(x) ∧  B(x)] 
 
 The domain is Isla Sorna, ie Jurassic Park “Site B.” 
 A(x) = Dinosaur x has a skull with 12” of solid bone. 
 B(x) = Dinosaur x has 6” dagger-like teeth. 
 

The wff is not valid according to Jurassic Park: The Lost World because, although Isla Sorna was 
populated by pachycephalosauruses (A(x)) and Tyranosaurus Rexen (B(x)), there were no mutant 
bone-domed carnivores. 
 



§1.4 Predicate Logic 
  
2. Consider the wff 
 
  (∀ x) [(∃ y)P(x,y)  ∧  (∃ y) Q(x,y)] → (∀ x) (∃ y) [P(x,y)  ∧  Q(x,y)] 
 
 a. Find an interpretation to prove that this wff is not valid. 
 
  Domain: All possible implications A → B 
  P(x,y) = “y is the converse of x” 
  Q(x,y) = “y is the contrapositive of x” 
  

The wff would therefore translate as, “For all wffs x of the form A → B, there exists a 
wff y which is the converse of x, and a wff y which is the contrapositive of x.  This 
implies that for all wffs x, there exists a wff y which is both the converse and the 
contradiction of x.” 
 
This is provably false, since for any wff x of the form A → B, the contrapositive will 
have the form B’ → A’, while the converse will have the form B → A.  These are clearly 
different (and non-equivalent) wffs. 
 
We can easily show that that B’→ A’ is unequivalent to B → A by counterexample, by 
showing a case where the latter is true yet the former is false: 
 
If B is “being a book” and A is “all things made of paper”, then we know that B → A is 
true (if a thing is a book, then the thing is made of paper).  However, just because a thing 
is not a book does not mean that a thing is not made of paper.. 

   
 b. Find the flaw in the following “proof” of this wff. 
 

1. (∀ x) [(∃ y)P(x,y)  ∧  (∃ y) Q(x,y)]  hyp 
2. (∀ x) [P(x,a)  ∧  Q(x,a)]   ei, 1 
3. (∀ x) (∃ y) [P(x,y)  ∧  Q(x,y)]   eg, 2 

 
In step (2), the same value a is instantiated in two different parts of the wff.  There is no 
reason to believe, based on the hypothesis given, that the same value a for variable y 
would necessarily hold true for both P(x,y) and Q(x,y).  Therefore, this should have been 
done in two Existential Instantiations, one using the value a and the other using the value 
b.  This would have prevented the incorrect Existential Generalization transformation 
applied in step (3). 

 
4. Prove that the wff is a valid argument: 
 
  (∀ x) P(x) → (∀ x) [P(x) ∨  Q(x)] 
 

1. (∀ x) P(x)   hyp 
2. P(x)    ui, 1 
3. P(x) ∨  Q(x)   add, 2 
4. (∀ x) [P(x) ∨  Q(x)]  ug, 3 

 



9. Either prove that the wff is a valid argument or give an interpretation in which it is false: 
 
  (∃ x) [A(x)  ∧  B(x)] → (∃ x)A(x)  ∧  (∃ x)B(x) 
 

1. (∃ x) [A(x)  ∧  B(x)]  hyp 
2. A(x)  ∧  B(x)   ei, 1 
3. A(x)    sim, 2 
4. B(x)    sim, 2 
5. (∃ x) A(x)   eg, 3 
6. (∃ x) B(x)   eg, 4 
7. (∃ x)A(x)  ∧  (∃ x)B(x)  con, 5, 6 

 
17. Either prove that the wff is a valid argument or give an interpretation in which it is false: 
 
  [P(x) → (∃ y)Q(x,y)] → (∃ y)[P(x) →  Q(x,y)] 
 

1. P(x) → (∃ y)Q(x,y)  hyp 
2. P(x)    temp hyp 
3. (∃ y)Q(x,y)   imp, 1, 2 
4. Q(x,a)   ei, 3 
5. P(x) → Q(x,a)   temp hyp discharged 
6. (∃ y)[P(x) →  Q(x,y)]  eg, 5 
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Read chapter 2 (“Proofs, Recursion, and Analysis of Algorithms”) 
and complete the following problems to hand in: 
 
p15 (§1.1): 11c, 15d, 19d 
p30 (§1.2): 8, 25, 29 
p41 (§1.3): 4d, 9e, 15e 
p56 (§1.4): 10, 18, 24 
p76 (§1.6): 3, 8 
p93 (§2.1): 14, 22 



§1.4 Statements, Symbolic Representation, and Tautologies 
 
11c. Construct truth tables for the following wffs.  Note any tautologies or contradictions. 
  A ∧  (A’ ∨  B’)’ 
 
 First, let’s simplify the wff, to minimize the number of columns needed for the truth table: 
  

1. A ∧  (A’ ∨  B’)’  hyp 
2. A   sim, 1 
3. (A’ ∨  B’)’  sim, 1 
4. A ∧  B   DeMorgan, 3 
5. B   sim, 4 
6. A ∧  B   con, 2, 5 

 
A B A ∧  B 
F F F 
F T F 
T F F 
T T T 

 
 
15d. Verify by constructing truth tables that the follow wffs are tautologies. 
 

A → (A ∨  B) 
A B A ∨  B A → A ∨  B 
F F F T 
F T T T 
T F T T 
T T T T 

 
19d. Use algorithm TautologyTest to prove that the following are tautologies. 
 
  (A ∧  B) ∧  B’ → A 
 

Comment: On the surface, this appears true by inconsistency.  B ∧  B’ is a contradiction, so the wff 
essentially says nothing at all about the value of A – meaning that the implication is true, ie that, if 
A, then A, else not A.  
 

1. Consider (A ∧  B) ∧  B’ → A to be of the form P → Q 
2. Assume P is true. 
3. Assume Q is false. 
4. Assume (A ∧  B) ∧  B’ is true  (1, 3) 
5. Assume A is false   (1, 3) 
6. Assume (A ∧  B) is true   (4, sim) 
7. Assume B’ is true   (4, sim) 
8. Assume A is true    (6, sim) 
9. Assume B is true    (6, sim) 
10. Assume B is false   (7) 
11. *** All letters now have truth letters*** 
12. Totals are: 
13. A: false, true    (5, 9) 
14. B: true, false    (9, 10) 
15. Both A and B end up with multiple truth values 
16.   contradiction, ie (A ∧  B) ∧  B’ → A is a tautology 



§1.2 Propositional Logic 
 
8. Use propositional logic to prove that the argument is valid: 
 
  (A’ → B’) ∧  B ∧  (A → C) → C 
 

1. A’ → B’    hyp 
2. B    hyp 
3. A → C    hyp 
4. A ∨  B’    imp, 1 
5. B’ ∨  A    comm, 4 
6. B → A    imp, 5 
7. A    mp, 6, 2 
8. C    mp, 3, 7 

 
25. Use propositional logic to prove the argument valid: 
 
  (A ∨  B) ∧  (A → C) ∧  (B → C) → C 
 

1. A ∨  B    hyp 
2. A → C    hyp 
3. B → C    hyp 
4. A’ ∨  C    imp, 2 
5. B’ ∨  C    imp, 3 
6. (A’ ∨  C) ∧  (B’ ∨  C)  con, 4, 5 
7.  (A’ ∧  B’) ∨  C   rev dist, 6? 
8. (A’ ∧  B’)’ → C   imp, 7 
9. (A ∨  B) → C   DeMorgan, 8 
10. C    mp, 9, 1 
 

29. Using propositional logic, prove that each argument is valid.  Use the statement letters 
shown. 

 
 If the program is efficient, it excutes quickly. Either the program is efficient, or it has a bug.  

However, the program does not execute quickly.  Therefore, it has a bug.  (E, Q, B) 
 
  (E → Q) ∧  (E ∨  B) ∧  Q’ → B 
   

1. E → Q    hyp 
2. E ∨  B    hyp 
3. Q’    hyp 
4. E’ ∨  Q    imp, 1 
5. E’    ds, 4, 3 
6. B    ds, 2, 5 



§1.3 Quantifiers, Predicates, and Validity 
 
4d. For each wff, find an interpretation in which it is true and one in which it is false. 
 
 (∃ x)[ A(x) ∧  (∀ y) B(x,y) ] 
 
 True: 
   
  The domain is all positive even integers. 
  A(x) = “x < 3” 
  B(x,y) = “y / x is a positive integer” 
 
 False: 
 
  The domain is all positive even integers. 
  A(x) = “x > 3” 
  B(x,y) = “y / x is a positive integer” 
 
9e. Using the predicate symbols shown and appropriate quantifiers, write each English language 

statement as a predicate wff. 
 

C(x) is “x is a Corvette.” 
F(x) is “x is a Ferrari.” 
P(x) is “x is a Porche.” 
S(x,y) is “x is slower than y.” 

 
“Some Porches are slower than no Corvette.” 

 
(∃ x) (∀ y) [(P(x) ∧  C(y)) → S(x,y)’] 

 
15e. Explain why each wff is valid: 
 

(∀ x)[A(x) → B(x)] → [(∀ x)A(x) → (∀ x)B(x)] 
 

This is valid because in both sides of the primary implication, the predicate A(x) filters the scope 
of x which is then evaluated by B(x). 
 
In the antecedent, (∀ x) starts the wff by declaring x to be “wide open” – anything within the 
domain.  However, the predicate A(x) immediately narrows down the possible values of x to only 
those matching A(x).  It is this subset of ∀ x which is then implied to be also true under B(x). 
 
In the consequent wff, this is not immediately obvious, because we now see the notation (∀ x)B(x) 
and think, “Whoa, we don’t know that to be true – we don’t know that B(x) is true for all x, 
because that wasn’t said in the antecedent wff – we only knew that B(x) was true if A(x).” 
 
However, the same reasoning holds true, because the antecedent in the consequent wff does apply 
a functionally similar filter on the input to B(x).  In this case, it states, essentially, that “For all x 
such that A(x), then B(x).”  Ie, we no longer start with a truly “global” x as we did in the first wff – 
we start with a pre-filtered subset of global, matching A(x), which is exactly the antecedent we 
need to know that B(x) is true for all filtered-possible values of x. 

 



§1.4 Predicate Logic 
 
10. Either prove that the wff is a valid argument or give an interpretation in which it is false. 
 

(∃ x) [R(x) ∨  S(x)] → (∃ x)R(x) ∨  (∃ x)S(x) 
 
 Start by re-writing the conclusion as: 
 

[(∃ x)R(x)]’ → (∃ x)S(x) 
 

1. (∃ x) [R(x) ∨  S(x)]   hyp 
2. [(∃ x)R(x)]’   hyp 
3. (∀ x)R(x)’   neg, 2 
4. R(a)’    ui, 3 
5. R(a) ∨  S(a)   ei, 1 
6. R(a)’ → S(a)   imp, 5 
7. S(a)    mp, 5, 4 
8. (∃ x)S(x)    eg, 7 

 
 
18. Either prove that the wff is a valid argument or give an interpretation in which it is false. 
 

∃ x[P(x) → Q(x)] ∧  ∀ y[Q(y) → R(y)] ∧  ∀ xP(x) → ∃ xR(x) 
 

1. ∃ x[P(x) → Q(x)]   hyp 
2. ∀ y[Q(y) → R(y)]   hyp 
3. ∀ xP(x)    hyp 
4. P(a) → Q(a)   ei, 1 
5. P(a)    ui, 3 
6. Q(a)    mp, 4, 5 
7. ∃ xQ(x)    eg, 6 
8. Q(b) → R(b)   ui, 2 
9. Q(b)    ei, 7 
10. R(b)    mp, 8, 9 
11. ∃ xR(x)    eg, 10 

 
24. Using predicate logic, prove that each argument is valid.  Use the predicate symbols shown. 
 
 Every computer science student works harder than somebody, and everyone who works harder 

than any other person gets less sleep than that prson.  Maria is a computer science student.  
Therefore, Maria gets less sleep than someone else. 
C(x), W(x,y), S(x,y), m 
 

∀ x[C(x) → W(x,y)] ∧  ∀ x[W(x,y) → S(x,y)] ∧  C(m) → ∃ yS(m,y) 
 

1. ∀ x[C(x) → W(x,y)]  hyp 
2. ∀ x[W(x,y) → S(x,y)]  hyp 
3. C(m) → W(m,y)   ui, 1 
4. C(m)    hyp 
5. W(m,y)    mp, 3, 4 
6. W(m,y) → S(m,y)   ui, 2 
7. S(m,y)    mp, 6, 5 
8. ∃ yS(m,y)    eg, 7 

 



§1.6 Proof of Correctness 
 
3. Verify the correctness of the following program segment with the preconditon and 

postcondition shown. 
 

{x = 1} 
 y = x + 3 
 y = 2 * y 
{y = 8} 

 
{Q}  {x = 1} 
 S0  y = x + 3 
{R1}  {y = 4} 
 S1  y = 2 * y 
{R}  {y = 8} 
 

 
8. Verify the correctness of the following program segment with the preconditon and 

postcondition shown. 
 

{x = 7} 
 if x � � then 
  y = x 
 else 
  y = 2 * x 
 end if 
{y = 14} 

  
 {Q}  {x = 7} 
 {B}  {x � �` 
 {P1}   y = x 
 {P2}   y = 2 * x 
 {R}  {y = 14} 
 
 {Q ∧  B} P1 {R} 
 {x = 7 and x � �` y = x {y = 14} 
 {x = 7 and x � �` y = 7 {y = 14} 
 
  true because {Q ∧  B}’ 
 
 {Q ∧  B}’ P2 {R} 
 {x = 7 and x > 0} y = 2 * x {y = 14} 
 {x = 7 and x > 0} y = 14 {y = 14} 
 
  true by assignment rule 
 



§2.1 Proof Techniques 
 
14. Prove the given statement. 
 
 For every integer n, the number 
 
  3(n2 + 2n + 3) – 2n2 
 
 is a perfect square. 
 
 In other words, prove the following predicate wff (domain is all integers): 
 

∀ x∃ y[3(x2 + 2x + 3) – 2x2 = y2] 
 
Start by simplifying the equation: 
 

1. 3(x2 + 2x + 3) – 2x2 = y2 
2. 3x2 + 6x + 9 – 2x2 = y2 
3. x2 + 6x + 9= y2     
4. (x + 3)(x + 3) = y2 
5. (x + 3)2 = y2 

 
We can now see that the equation is intuitively tautological – obviously, any quantity squared will 
always result in a perfect square. 

 
22. Prove the given statement. 
 
 The sum of three consecutive integers is divisible by 3. 
 
 In other words, prove the following predicate wff: 
 

  

3

)2()1(
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))](()([

++++=

→∀
xxx

xP

xPQxQx
 

  Q(x) = “x is an integer” 
 

Again, begin by simplifying the equation P(x): 
 

1. 
3

)2()1( ++++ xxx
 

2. 
3

21 ++++ xxx
 

3. 
3

33 +x
 

4. 
3

)1(3 +x
 

5. 




 +

3

)1(
3

x
 

 
Again, the simplified equation makes its truth obvious – clearly, any quantity multiplied by three 
will be evenly divisible by 3. 
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all those things we cannot know 
we dream, we hypothesize 

maybe these are secrets shared by those 
watching from the sky 

if we are only members of the human race 
no supernatural beings from a 

supranatural place 
if you can't solve the problem 

come and tell me to my face 
– Geddy Lee, My Favorite Headache, “The Angels’ Share” 

  
 

 
 
 
 
Read chapter 3 and complete the following problems to hand in: 
 
p93 (§2.1): 18, 24, 27 
p106 (§2.2): 7, 22, 37 
p118 (§2.3): 7, 9 
p137 (§2.4): 8, 15, 33, 37 
p176 (§3.1): 6a, 7b, 10k, 17, 35 
 



§2.1 
 
18. Prove the given statement: 
   If  0322 =−+ xx  then 2≠x . 
 
 Proof by contradiction: 
 

1. 0322 =−+ xx    hyp 
2. x = 2     hyp 
3. 2*2 + 2(2) – 3 = 0 
4. 4 + 4 – 3 = 0 
5. 5 = 0 
6. Contradiction! 
7.  0322 =−+ xx  → 2≠x  
 

24. Prove the given statement: 
 

 The difference of two consecutive [integral] cubes is odd. 
 

Start by expressing the statement mathematically and simplifying: 
 

1. ( ) 331 xx −+  

2. ( )( ) 3211 xxx −++  

3. ( )( ) 32 121 xxxx −+++  

4. ( ) 3223 122 xxxxxx −+++++  

5. ( ) 323 133 xxxx −+++  

6. ( ) 323 133 xxxx −+++  

7. 133 2 ++ xx  
 

Now we only need to prove that 133 2 ++ xx  is odd for all integers x.  By 
definition, if x is odd, then x – 1 is even.  Therefore, we can instead attempt to 
prove that xx 33 2 +  is even. 
 

1. xx 33 2 +  
2. )1(3 +xx  
3. )1)((3 +xx  

 
The above product will be even if any of the three factors are even.  We know by 
definition that either x or x + 1 is guaranteed to be even, so the whole expression 
will be even. 
 
Therefore the statement is true. 



 
27. Prove the given statement: 
 

 For any two numbers x and y, yxxy = . 

 
|x| is defined as x if x ≥ 0, (-1)(x) otherwise (or [0 – x]). 
 
Prove for all four possible cases: 
 

Case x y 
1 neg neg 
2 neg pos 
3 pos neg 
4 pos pos 

 
Case 1: 
 

1. |xy| = |x| |y| 
2. xy = (0-x)(0-y) 
3. xy = xy 
4. true 

 
Case 2: 
 

1. |xy| = |x| |y| 
2. (0 – xy) = (0-x)y 
3. -xy = -xy 
4. true 

 
Case 3: 
 

  Identical to Case 2 with x and y transposed. 
 

Case 4: 
 

1. |xy| = |x| |y| 
2. xy = xy 
3. true 

 



§2.2 
 
7. Use mathematical induction to prove that the statement is true for every positive 

integer n. 
 

6

)12)(1(
21 222 ++=+++ nnn

n�  

 
To prove this via the 1st principle of mathematical induction, we must complete 
the following sub-proofs: 
 

1. prove P(1) 
2. assuming P(k), prove P(k+1) 

 
Direct proof of #1: 
 

true
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Direct proof of #2: 
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22. An arithmetic progression (arithmetic sequence) is a sequence of terms where 
there is an initial term a and each succeeding term is obtained by adding a 
common difference d to the previous term.  Prove the formula for the sum of the 
first n terms of an arithmetic sequence (n ≥ 1): 

 

])1(2[
2

])1([)2()( dna
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To prove this via the 1st principle of mathematical induction, we must complete 
the following sub-proofs: 
 

1. prove P(1) 
2. assuming P(k), prove P(k+1) 

 
Direct proof of #1: 
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Direct proof of #2: 
 

true

adkakdkadkakdk

adkakdkdkadkdkdak

dkadkakdkaddkak

dkadkak
dka

kdak

kdak
kdakdadadaa

11

2222

2222

2222)2(

2

22
)(

2

)1(2(

2

)](2)[1(
)]([)]1([)2()(

22

22

2

2

=
+++=+++

+++=++−+
+++=++−+

+++=++−+

++=++−+++++++ �

 

 



37. Prove that the statement is true for every positive integer. 
 

732 +n is divisible by 8. 
 

To prove this via the 1st principle of mathematical induction, we must complete 
the following sub-proofs: 
 

1. prove P(1) 
2. assuming P(k), prove P(k+1) 

 
Direct proof of #1: 
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Direct proof of #2: 
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§2.3 
 
7. Use the Euclidean algorithm to find the greatest common divisor of the given 

numbers: 
 
  (1326, 252) 

 

5

66

1260

1326252  
3

54

198

25266  
1

12

54

6654  
4

6

48

5412  
2

0

12

126  

 
GCD = 6 

 
9. Prove that the program segment is correct by finding and proving the appropriate 

loop invariant Q and evaluating Q at loop termination. 
 

Function to return the value x – y for x, y ≥ 0. 
 

Difference( nonnegative integer x; nonnegative integer y ) 
 

Local variables: 
 integers i, j 
 
 i = 0 
 j = x 
 while i ≠ y do 
  j = j – 1 
  i = i + 1 
 end while 
 
 // j now has the value x – y  
 return j 
end function Difference 

 
Attempt to prove the algorithm is correct using the loop rule of inference. 
 
To do that, we must pick a Q, and prove it is a loop invariant.  Then the loop 
rule of inference will allow us to state that Q ^ B’ will be true after the loop.  
Q ^ B’ should be chosen such that, together, they state “j = x – y”. 
 
Let Q equal “j = x – i” 
Let B equal “i ≠ y” 
 



Attempt to prove Q is a loop invariant: 
 

Let Q(n) equal “jn = x – in” 
 
Prove Q(0): 
 

1. j0 = x   algorithm 
2. i0 = 0   algorithm 
3. j0 = x – i0   hyp 
4. j0 = x – 0   hyp 
5. j0 = x   subtraction, 4 
6. (5) proves (3) 
7.  Q(0) is true 
 

Assume Q(k): jk = x – ik 
 
 Prove Q(k+1): jk+1 = x – ik+1 

 
1. jk+1 = jk – 1   algorithm 
2. ik+1 = ik + 1   algorithm 
3. ik = ik+1 – 1   subtract 1 from both sides of (2) 
4. jk+1 = x – ik – 1   substitute Q(k) into (1) 
5. jk+1 = x – (ik+1 – 1) – 1  substitute (3) into (4) 
6. jk+1 = x – ik+1 + 1 – 1  simplify (5) 
7. jk+1 = x – ik+1   simplify (6) 
8.  Q(k+1) is true 

 
We have proven that Q is a loop invariant. 
 
Therefore, upon loop termination, the assertion Q ∧  B’ must be true, ie: 
 
 (j = x – i) ∧  (i = y) 
 
Combining those statements yields: 
 
 j = x – y 
 
Therefore, the algorithm is provably correct.  
 



§2.4 
 
8. Write the first five values in the sequence: 
 

D(1) = 3 
D(2) = 5 
D(n) = (n – 1)D(n – 1) + (n – 2)D(n – 2) for n > 2 
 

n D(n) 
1 3 
2 5 
3 13 
4 49 
5 235 
6 1,371 
7 9,401 
8 74,033 
9 658,071 

10 6,514,903 
 

1

100

10000

1000000

100000000

1 2 3 4 5 6 7 8 9 10

n

D
(n

)

 
15. Prove the given property of the Fibonacci numbers directly from the definition. 
 

 F(n + 6) = 4F(n + 3) + F(n) for n ≥ 1 
 

Use 2nd principle of induction. 
 
Prove for P(1) and P(2). 
 
 Prove for P(1): 
 

1. F(n + 6) = 4F(n + 3) + F(n) 
2. F(1 + 6) = 4F(1 + 3) + F(1) 
3. F(7) = 4F(4) + F(1) 
4. 13 = 4(3) + 1 
5. 13 = 12 + 1 
6. 13 = 13 
7. true 



 
 Prove for P(2): 
 

1. F(n + 6) = 4F(n + 3) + F(n) 
2. F(2 + 6) = 4F(2 + 3) + F(2) 
3. F(8) = 4F(5) + F(2) 
4. 21 = 4(5) + 1 
5. 21 = 20 + 1 
6. 21 = 21 
7. true 

 
Assume that for all r, 1 ≤ r ≤ k, 
 

F(r + 6) = 4F(r + 3) + F(r)  inductive hypothesis 
 

Now show for P(k + 1), or 
 

F(k + 1 + 6) � 4F(k + 1 + 3) + F(k + 1) 
F(k + 7) � 4F(k + 4) + F(k + 1) 
 

1. F(k + 7) = F(k + 5) + F(k + 6)    Fibonacci 
2. state F(k + 5) in terms of inductive hypothesis 

a. Let r = k – 1 
b. F(r + 6) = 4F(r + 3) + F(r)   ind. hyp. 
c. F(k – 1 + 6) = 4F(k – 1 + 3) + F(k – 1) subst 2, 2a 
d. F(k + 5) = 4F(k + 2) + F(k – 1) 

3. state F(k + 6) in terms of inductive hypothesis 
a. Let r = k 
b. F(r + 6) = 4F(r + 3) + F(r)   ind. hyp. 
c. F(k + 6) = 4F(k + 3) + F(k)   subst 2, 2a 

4. F(k + 7) = 4F(k + 2) + F(k – 1) + 4F(k + 3) + F(k) subst 2d, 3c, 1 
5. F(k + 7) = 4F(k + 2) + 4F(k + 3) + F(k – 1) + F(k) comm, 4 
6. F(k + 7) = 4[F(k + 2) + F(k + 3)] + F(k – 1) + F(k) dist, 5 
7. F(k + 4) = F(k + 2) + F(k + 3)    Fibonacci 
8. F(k + 1) = F(k – 1) + F(k)    Fibonacci 
9. F(k + 7) = 4F(k + 4) + F(k + 1)   subst 7, 8, 6 
10.  P(k+1) is true 

 
Therefore, by the 2nd inductive hypothesis, the property  
 

F(n + 6) = 4F(n + 3) + F(n)  
 

is true for all Fibonacci numbers where n ≥ 1. 
 



33. An amount of $500 is invested in an account paying 10% interest compounded 
annually. 

 
a. Write a recursive definition for P(n), the amount in the account at the 

beginning of the nth year. 
 

P(1) = 500 
P(n) = 1.1(P(n-1)) 
 

b. After how many years will the account balance exceed $700? 
 

Five years:  
 

year principle 
1 $500.00 
2 $550.00 
3 $605.00 
4 $665.50 
5 $732.05 

  
37. A collection W of strings of symbols is defined recursively by 
  
 1. a, b, and c belong to W. 
 2. If X belongs to W, so does a(X)c. 
 
 Which of the following belong to W? 
 
 a. a(b)c b. a(a(b)c)c c. a(abc)c d. a(a(a(a)c)c)c e. a(aacc)c 
 yes  yes  no  yes   no 
 
 



§3.1 
 
6a. Describe each of the following sets by giving a characterizing property: 
 
  {1, 2, 3, 4, 5} 
 
 {x | x is an integer and 0 < x < 6 } 
 
7b. Describe each of the following sets: 
 

 { x | x + r H ($y)($z)(y + {0,1} and z + {3, 4} and y < x < z) }  
 
 Long version: 
 

x is a non-negative integer (x >= 0 ), and 
there is a y and a z where y = 0 or 1 and z = 3 or 4 and y < x < z. 
 
U  0 < x < 4 
U x = { 1, 2, 3 } 

 
Could not x be simply { 2 }?  I don’t think so, because the characterizing property 
specified the scope of y and z with $, not !.  Therefore, the description is still 
true if x is 1 or 3. 

 
10k. Let  
  R = { 1, 3, π, 4.1, 9, 10 } S = { { 1 }, 3, 9, 10 } 
  T = { 1, 3, π }   U = { { 1, 3, π }, 1 } 
  

Which of the following are true?  For those that are not, why not? 
 
 T + U true 
 



17. Prove that if A § B and B § C, then A § C. 
 

1. A § B     hyp 
2. B § C    hyp 
3. 
!x)(x + A → x + B)   def. subset, 1 
4. 
!x)(x + B → x + C)   def. subset, 2 
5. t     ui, 3 
6. t + A     temp hyp 

a. t  + B    mp, 5, 3 
b. t  + C    mp, 6, 4 

7. (t + A) → (t  + C)   temp hyp discharged 
8. (!x) [(x + A) → (x  + C)]  ug, 7 

9. U A § C    def. subset, 8 
 
35. Let 

A = { p, q, r, s } 
B = { r, t, v } 
C = { p, s, t, u } 
 

be subsets of S = { p, q, r, s, t, u, v, w }.  Find 
 
a. B J C   = { t } 
b. A K C   = { p, q, r, s, t, u } 
c. C’   = { q, r, v, w } 

d. A J B J C  =  & 
e. B – C   = { r, v } 
f. (A K C)’  = { v, w } 
g. A � B   = { 

( p, r ), ( p, t ), ( p, v ), 
( q, r ), ( q, t ), ( q, v ), 
( r, r ), ( r, t ), ( r, v ), 
( s, r ), ( s, t ), ( s, v ) 

    } 
h. (A K B) J C’  =  { q, r, v } 
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Read chapter 5 and complete the following problems to hand in: 
 
p176 (§3.1): 5a, 11, 36k-L, 53a-c 
p194 (§3.2): 3, 8, 19, 34, 52 
p203 (§3.3): 3, 10, 13 
p215 (§3.4): 8, 15, 33, 37 
p225 (§3.5): 1g, 2 
 

 



§3.1 
 
5a. Describe the following set by listing its elements: 
 

{ x | x + r and x2 – 5x + 6 = 0 } 
 

1. x2 – 5x + 6 = 0  
2. ( x – 3 )( x – 2 ) = 0 
3. { 2, 3 } 

 
11. Let 

A = { a, { a }, { { a } } } B = { a }  C = { &, { a, { a } } } 
 

Which of the following are true?  For those that are not, why not? 
 

a. B § A 

true 
b. B + A 

true 
c. C § A 

false; although C1 and 
C2 are both subsets of 
A, { C1, C2 } is not. 
 

d. & § C 
true 

e. & + C 
true 

f. { a, { a } } + A 
false; A has no member 
matching this 
construction 
 

g. { a, { a } } § A 
true 

h. B § C 
false; C has 
elements which 
themselves 
contain B, but the 
subset operator 
does not default 
to recursive 
behaviour 

i. { { a } } § A 
true 

 



36. Let 
  A = { 2, 4, 5, 6, 8 } 
  B = { 1, 4, 5, 9 } 
  C = { x | x + � and 2 ≤ x < 5 } = { 2, 3, 4 } 
 
 be subsets of S = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 } [ie \d].  Find 
 
 k. ( B – A )’ J ( A – B ) 

1. ( { 1, 4, 5, 9 } – { 2, 4, 5, 6, 8 } )’ J ( { 2, 4, 5, 6, 8 } – { 1, 4, 5, 9 }  ) 
2. ( { 1, 9 } )’ J { 2, 6, 8 } 
3. { 0, 2, 3, 4, 5, 6, 7, 8 } J { 2, 6, 8 } 
4. { 2, 6, 8 } 
5. A – B 

  

 L. ( C’ K B )’ 
1. ( { 0, 1, 5, 6, 7, 8, 9 } K { 1, 4, 5, 9 } )’ 
2. ( { 0, 1, 4, 5, 6, 7, 8, 9 } )’ 
3. { 2, 3 } 

 
53. A binary opration on sets called the symmetric difference is defined by: 
 

A # B = (A – B ) K ( B – A ) 
 

 a. Draw a Venn diagram to illustrate A # B. 
 

BA

 
 
 b. For A = { 3, 5, 7, 9 } and B = { 2, 3, 4, 5, 6 }, what is A # B ? 
 

{ 2, 4, 6, 7, 9 } 
 



 c. Prove that A # B = ( A K B ) – ( A J B ) for arbitrary sets A and B. 
 

Use proof method #2 from p173, ie pick arbitrary members from each 
side and prove they belong to the other side.  That is, prove: 
 
1. x + ( ( A – B ) K ( B – A ) ) → x + ( ( A K B ) – ( A J B ) ) 
2. x + ( ( A K B ) – ( A J B ) ) → x + ( ( A – B ) K ( B – A ) ) 
 
Proof  #1: 
 
1. x + ( ( A – B ) K ( B – A ) )    hyp 
2. x + ( A – B ) or x + ( B – A )    def’n union, 1 
3. ( ( x + A ) and ( x * B ) ) or ( ( x + B ) and ( x * A ) )  def’n subtr, 2 
4. For simplified notation, let: 

a. P = ( x + A ) 
b. P’ = ( x * A ) 
c. Q = ( x + B ) 
d. Q’ = ( x * B ) 
e. From (3), we have ( P H Q’ ) I ( Q H P’ ) 
f. Try to prove ( P I Q ) H ( P’ I Q’ ) 

5. ( P H Q’ ) I ( Q H P’ )     var subst, 3 
6. ( ( P H Q’ ) I Q ) ^ ( ( P H Q’ ) I P’ )   dist, 5 
7. ( Q I ( P H Q’ ) ) ^ ( P’ I ( P H Q’ ) )   comm, 5 
8. ( ( Q I P ) H ( Q I Q’ ) ) H ( ( P’ I P ) H ( P’ I Q’ ) ) dist, 7 
9. ( ( Q I P ) H 1 ) H ( 1 H ( P’ I Q’ ) )   complement, 8 
10.  ( Q I P ) H ( P’ I Q’ )     identity, 9 
11. ( P I Q ) H ( P’ I Q’ )       comm, 10 
12.  ( ( x + A ) or ( x + B ) ) and ( ( x * A ) or ( x * B ) )  var subst, 11 
13. ( ( x + A ) or ( x + B ) ) and ( ( x + A ) and ( x + B ) )’  DeMorgan, 12 
14. x + ( A K B )  and ( ( x + A ) and ( x + B ) )’   def’n K, 13 
15. x + ( A K B ) and ( x + ( A J B ) )’    def’n J, 14 
16.  x + ( A K B ) and x * ( A J B )     dbl neg, 15 
17. x + ( ( A K B ) – ( A J B ) )    def’n subtr, 16 

 
Proof  #2 reads the exact same way, only in reverse (steps 17 back up 
to 1). 

 
§3.2 
 
3. A video game on a microcomputer is begun by making selections from each of 

three menus.  The first menu (number of players) has four selections, the second 
(level of play) has eight, and the third menu (speed) has six.  In how many 
configurations can the game be played? 

 
  4 × 8 × 6 = 192 
 



8. A, B, C, and D are nodes on a computer network.  There are two paths between A 
and C, two between B and D, three between A and B, and four between C and D.  
Along how many routes can a message from A to D be sent? 

 
Given... 
AC = 2 
BD = 2 
AB = 3 
CD = 4 

Assuming... 
AD = 0 
BC = 0 
CB = 0 
DA = 0 
DB = 0 
DC = 0 

Then... 
ACD = 2 × 4 = 8 
ABD = 3 × 2 = 6 
Total = 14 
 

 
19. A new car can be ordered with a choice of 10 exterior colors; 7 interior colors; 

automatic, 3-speed, or 5-speed transmission; with or without air conditioning; 
with or without power steering; and with or without the option package that 
contains the power door lock and rear window defroster.  How many different 
cars can be ordered? 

 
 E = 10  I = 7  T = 3 
 A = 2  P = 2  O = 2 
  
 Combinations = E × I × T × A × P × O = 1680 
 
34. Regarding the set of binary strings of length 8 (ie, /^[01]{8}$/ ), how many have 

1 as the second digit?   
 
 Note that “second” isn’t defined as leading from the left or right, but it doesn’t 

matter – the answer would be “half of the total”, obviously, which would be: 
 
28 ÷ 2 = 27  = 128 

 
52. Regarding a hand of cards, where one hand consists of a single card drawn from a 

standard 52-card deck, with flowers on the back, and a second card drawn from a 
standard 52-card deck, with birds on the back, how many hands consist of a pair 
of aces? 

 
 There are four aces in each deck (SHCD), each of which may be paired with any 

of four aces in the other deck, so there are 4 × 4 = 16 possible hands consisting of 
a pair of aces. 

 
That’s assuming that the ornament on the back of the card is considered sufficient 
to distinguish { Ace-Spades-Flower, Ace-Hearts-Bird } from { Ace-Spades-Bird, 
Ace-Hearts-Flower }, as indicated by the note given to problem 51... 

 
 



§3.3 
 
3. Quality control in a factory pulls 40 parts with paint, packaging, or electronics 

defects from an assembly line.  Of these, 28 had a paint defect, 17 had a 
packaging defect, 13 had an electronics defect, 6 had both paint and packaging 
defects, 7 and both packaging and electronic defects, and 10 had both paint and 
electronics defects.  Did any part have all three types of defect? 

 
 Let: A = { parts with paint defects } 

K = { parts with packaging defects } 
E = { parts with electronics defects } 
 

 | A K K K E | = 40 
 | A | = 28 
 | K | = 17 
 | E | = 13 
 | A J K | = 6 
 | K J E | = 7 
 | A J E | = 10 
 
 From the three-set version of the Principle of Inclusion and Exclusion (p199), we 

know that: 
 

1. | A K K K E | = |A| + |K| + |E| – | A J K | – | K J E | – | A J E | + | A JK J E | 
2. 40 = 28 + 17 + 13 – 6 – 7 – 10 + | A JK J E | 
3. 40 – 28 – 17 – 13 + 6 + 7 + 10 = | A JK J E | 
4.  5  = | A JK J E | 

 
Answer: yes 

 
10. You are developing a new bath soap, and you hire a public opinion survey group 

to do some market research for you.  The group claims that, in its survey of 450 
consumers, the following were named as important factors in purchasing bath 
soap: 

 
Odor 425 |O| 
Lathering ease 397 |L| 
Natural ingredients 340 |N| 
Odor and lathering ease 284 |O J L| 
Odor and natural ingredients 315 |O J N| 
Lathering ease and natural ingredients 219 |L J N| 
All three factors 147 |O JL J N| 

 



Should you have confidence in these results?  Why or why not? 
 
 From the three-set version of the Principle of Inclusion and Exclusion (p199), we 

know that: 
 

1. | O K L K N | = |O| + |L| + |N| – |O J L| – |O J N| – |L J N| + |O JL J N| 
2. 450 = 425 + 397 + 340 – 284 – 315 – 219 + 147 
3. 450 = 491 
4. contradiction! 

 
Therefore, no, the marketing results should not be trusted, because their math 
doesn’t hold up.  ±3% margin of error is considered reasonable for many polls 
and surveys, yet these marketing figures exceed ±9%. 
 

13. How many cards must be drawn from a standard 52-card deck to guarantee 2 
cards of the same suit? 

 
 5, using the Pigeonhole Principle (and common sense). 
 
 
§3.4 
 
8. a. Stock designations on an exchange are limited to three letters.  How many 

different designations are there? 
 
  Note: this question hinges on the interpretation of “limited”, ie “are 

limited to having precisely three letters,” or “are limited to having no 
more than three letters.” 

 
  Assuming interpretation #1: 
 
   263 = 17,576 
 
  Assuming interpretation #2: 
  
   263 + 262 + 26 = 18,278 
     
 b. How many different designations are there if letters cannot be repeated? 
 
  Assuming interpretation #1: 
 
   P(26, 3) = 26! ÷ (26-3)! 
    = 26! ÷ 23! 
    = 26 * 25 * 24 
    = 15,600 
 



  Assuming interpretation #2: 
  
   P(26, 3) + P(26, 2) + P(26, 1) 
   15,600 + 26 * 25 + 26 
   15,600 + 262 
   15,600 + 676 
   16,276 
 
15. Compute C( n, n – 1 ).  Explain why C( n, n – 1 ) = C( n, 1 ). 
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C( n, n – 1 ) equals C( n, 1 ) because both counting problems have the same 
cardinality. 
 
C( n, n – 1 ) is counting the number of ways you can take all elements of a set but 
one; in other words, you iterate through instances of the original set of n elements, 
taking a different one out each time.  Obviously, the number of different elements 
which you can take out of the set is equal to the number of elements in the set. 
 
This is numerically equivalent to C( n, 1 ), which simply computes the number of 
ways you can take a single element out of the original set, which again is directly 
equal to the cardinality of the set. 

 



33. Concerning a 5-card hand from a standard 52-card deck: 
 

How many hands contain a straight flush (five consecutive cards, for example, 
ace, 2, 3, 4, 5 of the same suit)? 
 

Note: I’m not a frequent poker player, so I’m assuming, from the way this 
question was stated, that a “straight flush” does include A-2-3-4-5, but 
does not include a “royal flush”, ie 10-J-Q-K-A. 

 
Straight flushes:  9 × 4 = 36 
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37. Fourteen copies of a code module are to be executed in parallel on identical 

processors organized into two communicating clusters, A and B.  Cluster A 
contains 16 processors and cluster B contains 32 processors. 

 
 Find the number of ways to choose the processors if cluster A has three failed 

processors and cluster B has two failed processors. 
 

Well, the problem doesn’t state that the module must be load-balanced 
(evenly or otherwise) between the two clusters – in fact, problem 35 
suggests rather strongly that it is a legitimate outcome to have all modules 
running on a single cluster. 
 
Therefore, out of the original clusters A and B, it would seem that we end 
up with an unordered collection of 43 working processors, 14 of which 
must be used for this deployment. 
 
Therefore, there are C( 43, 14 ) unique [working] deployment 
configurations, ie: 



 
1. C( 43, 14 ) 

2. 
)!1443(!14

!43

−
 

3. 
!29!14

!43
 

4. 
!29!14

)12829(304243 ××××××× ��

 

5. 
1234567891011121314

3031323334353637383940414243

×××××××××××××
×××××××××××××

 

6. 312345373834143 ××××××××  
7. 78,378,960,360 

 
Ie, there are about 80 billion possibilities. 

 
 
§3.5 
 
1g. Expand the expression using the binomial theorem: 
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812162169616

)3()2(1)3()2(4)3()2(6)3()2(4)3()2(1

)32(

qpqqpqpp

qpqpqpqpqp

qp

+−+−
−+−+−+−+−

−

 
2. Find the fourth term in the expansion of (a + b)10. 
 

Let n = 10 
k = 4 

 

37

37

37

37

37

37

37

1)1(

120
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!3
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)3,10(

)1,(
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−
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Read chapter 6 and complete the following problems: 
5.1: 1, 11, 33, 40, 56, 68, 71b 
5.2: 10, 14a, 19, 28 
5.3: 3, 8, 20 
5.4: 2, 8 



Section 5.1 
 

1. Give the function g that is part of the formal definition of the directed 
graph  shown. 

 

1 2

3

a

c
b

d

 
 g(a) = a: 1-2 
  b: 1-3 
  c: 2-3 
  d: 2-2 

 
 

11. Decide if the two graphs are isomorphic.  If so, give the function or 
functions that establish the isomorphism; if not, explain why. 

 
 

 1 

2 

3 4 

5 

a 

b 

c d 

e 

 
 

f1  =  1 Æ a 
 2 Æ d 
 3 Æ b 
 4 Æ e 
 5 Æ c 

f2  =  1, 4 Æ a, e 
 1, 3 Æ a, b 
 2, 5 Æ d, c 
 2, 4 Æ d, e 
 3, 5 Æ b, c 

  



33. Write the adjacency matrix for the graph: 
 

1

2 3

4 5

6 7  
 

       
0 1 1 0 0 0 0 
1 0 0 1 0 1 1 
1 0 0 0 1 1 1 
0 1 0 0 0 1 0 
0 0 1 0 0 0 1 
0 1 1 1 0 0 1 
0 1 1 0 1 1 0 

 
 

40. Draw the graph represented by the adjacency matrix: 
 

     
0 1 0 0 1 
1 0 1 0 0 
0 1 0 1 0 
0 0 1 0 1 
1 0 0 1 0 
     

 
 1 

5 

4 3 

2 

 



Draw the undirected graph represented by the adjacency list in the accompanying 
figure: 

 

2

1

1

2

3

3

2

2

4

3

3

4

4

1

2

3

4
 

 

32

4

1

 
 
 

68. Show that a coloring of the accompanying map requires three colors and 
no more than three colors. 

 
 

 
 

It’s simple to prove that the map requires no more than three colors, by 
demonstrating a 3-color solution: 

A

B

D
C

 
In order to show that the map requires at least three colors, we can label the four 
regions A through D, as shown above, and demonstrate that all possible one- and 
two-color solutions result in adjacent regions of the same color. 



 
One color: 
 A and B are adjacent 
 
Two colors: 
 

Given two colors and four regions, there are 16 possible colorations to 
choose from.  Each of them results in at least one case of adjoining same-
color regions (indicated by a slash through the affected cells).  Let the 
colors be represented by the integer values ‘0’ and ‘1’: 
 

A B C D 
0 0 0 0 
0 0 0 1 
0 0 1 0 
0 0 1 1 
0 1 0 0 
0 1 0 1 
0 1 1 0 
0 1 1 1 
1 0 0 0 
1 0 0 1 
1 0 1 0 
1 0 1 1 
1 1 0 0 
1 1 0 1 
1 1 1 0 
1 1 1 1 

 
71b. A coloring of a graph is an assignment of a color to each node of the 

graph in such a way that no two adjacent nodes have the same color.  The 
chromatic number of a graph is the smallest number of colors needed to 
achieve a coloring.  Find the chromatic number of the following graph: 

 
 

 
 



The smallest possible number is 4: 
 

 

 
 
 

5.2 
 

10. Draw the binary tree represented by the left child-right child 
representation of the figure.  (1 is the root.) 

 
 

 Left child Right child 
1 2 0 
2 3 4 
3 0 0 
4 5 6 
5 0 0 
6 0 0 

 
1

2

3

5 6

4

 
 

14b. For the tree in the figure, write the leftmost child-right sibling array 
representation described in Exercise 13. 

 
1

8

3

5 6 7 9 10 11

2 4

 



 
 Leftmost 

child 
Right 
sibling 

1 2 0 
2 5 3 
3 8 4 
4 9 0 
5 0 6 
6 0 7 
7 0 0 
8 0 0 
9 0 10 

10 0 11 
11 0 0 

 
 

19. Write the list of nodes resulting from a preorder traversal, an inorder 
traversal, and a postorder traversal of the tree. 

 
a

g

c

e f h i

b d

 
 

Preorder: a, b, e, f, c, g, h, d, i 
Inorder: e, b, f, a, g, c, h, i, d 
Postorder: e, f, b, g, h, c, i, d, a 

 
28. Draw a tree whose preorder traversal is 

 
a, b, c, d, e 
 

 and whose inorder traversal is 
 
  b, a, d, c, e 
 

a

c

e

b

d  
 



5.3 
 
 

3. Draw the decision tree for binary search on a list of seven elements.  
What is the depth of the tree? 

 
x:L(4)

x:L(6)

x:L(7)x:L(5)

x:L(2)

x:L(3)x:L(1)

L(1) < x < L (2)

L(2) < x  < L (3)

L(3) < x  < L(4)

L(4) < x  < L (5)

L(5) < x  < L(6)

L(6) < x  < L (7)

x > L(7)

x < L (1)

 
 

Tree depth = 3 
 

8a. Given the data 
 

g, d, r, s, b, q, c, m 
 
 Construct the binary search tree.  What is the depth of the tree? 
 

g

d

b

c

r

q s

m  
 

Depth = 3 
 
8b. Find the average number of comparisons done to search for an item that 

is known to be in the list using binary tree search on the tree of part (a).  
(Hint: Find the number of comparisons for each of the items.) 

 
2.75 

 
 



20. One of eight coins is counterfeit and is either too heavy or too light.  The 
problem is to identify the counterfeit coin and determine whether it is 
heavy or light. 

 
a. What is the number of final outcomes (the number of leaves in the 

decision tree)? 
16 (ie, eight coins × ( heavy or light ) ) 

 
b. Find a lower bound on the number of comparisons required to solve 

this problem in the worst case. 
4 

 
c. Devise an algorithm that meets this lower bound (draw its decision 

tree). 
 

AB:CD

AB:EF

C:A

A:B A:B C:D C:D E:F E:F G:H G:H

F:GD:EAB:CD

CD:EF

><

≠ =

>< >< >< >< >< >< ><

≠ = ≠ = ≠ =

≠ = ≠ =

≠ =
ABCD bad 
EFGH good

ABCD good 
EFGH bad

AB bad 
CD good

AB good 
CD bad

EF bad 
GH good

EF good 
GH bad

A 
bad

B 
bad

C 
bad

D 
bad

E 
bad

F 
bad

G 
bad

H 
bad

A light

A heavy

B  light

B heavy

C light

C heavy

D light

D
 heavy

E light

E heavy

F light

F heavy

G light

G  heavy

H light

H heavy
 

 

5.4 
 

2. Given the codes 
Character b h q w % 
Encoding scheme ���� ���� � �� ���

  
Decode the sequences 

a. ��������������

b h % % 
 

b. �����

w w q 

c. �����������

q h w b 
 



8.  
a. Construct the Huffman tree for the following characters and frequencies: 

 
Character B n p s w 
Frequency 6 32 21 14 27 

 
Pass 0: 6(b) 14(s) 21(p) 27(w) 32(n)

 
Pass 1: 

6(b) 14(s)

21(p) 27(w) 32(n)20

 
Pass 2: 

6(b) 14(s)

21(p)

27(w) 32(n)

20

41

 
 

Pass 3: 

6(b) 14(s)

21(p)

20

41

27(w) 32(n)

59

 
Pass 4: 

6(b) 14(s)

21(p)

20

41

27(w) 32(n)

59

100

 
 

b. Find the Huffman codes for these characters 
 

Character B n p s w 
Encoding scheme ��� �� �� ��� ��
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Complete the following problems to hand in: 
 
p15 (§1.1): 11e 
p30 (§1.2): 9, 25, 35 
p44 (§1.3): 15a, 16d, 17d 
p56 (§1.4): 10, 14 
p93 (§2.1): 21, 40, 46, 47 
p106 (§2.2): 10, 37 
p118 (§2.3): 4, 5 
p137 (§2.4): 5, 29, 52, 78 
p177 (§3.1): 43, 47, 59c, 59e, 59f 
p195 (§3.2): 22 
p203 (§3.3): 6, 7 
p215 (§3.4): 2, 58, 68 
p225 (§3.5): 1g 



§1.1 
 
11e. Construct truth tables for the following wffs.  Note any tautologies or 

contradictions. 
 
 (A → B) → [ ( A I C ) → ( B I C ) ] 
 

A B C A→B AIC BIC (AIC)→(BIC) (A→B)→[(AIC)→(BIC)] 
) ) ) 7 ) ) 7 7
) ) 7 7 7 7 7 7
) 7 ) 7 ) 7 7 7
) 7 7 7 7 7 7 7
7 ) ) ) 7 ) ) 7
7 ) 7 ) 7 7 7 7
7 7 ) 7 7 7 7 7
7 7 7 7 7 7 7 7

 
The final column is all “true”, so the implication is a tautology. 
 

 
§1.2 
 
9. Use propositional logic to prove that the argument is valid. 
 

(A → B) H [ B → ( C → D) ] H [ A → (B → C)] → (A → D) 
 

1. A → B     hyp 
2. B → (C → D)    hyp 
3. A → (B → C)    hyp 
4. A     temp hyp 

a. B    mp, 1, 4 
b. C → D    mp, 2, 4a 
c. B → C    mp, 3, 4 
d. C    mp, 4a, 4c 
e. D    mp, 4b, 4d 

5. A → D     temp hyp discharged 
 



25. Use propositional logic to prove the arguments valid; you may use any of the 
rules in Table 1.14 or any previously proven exercise. 

 
( A I B ) H ( A → C ) H ( B → C ) → C 
 

1. A I B       hyp 
2. A → C       hyp 
3. B → C       hyp 
4. A’ → B      imp, 1 
5. A’ → C      hs, 4, 3 
6. C’ → A      cont, 2 
7. C’ → C      hs, 6, 2 
8. (C’)’ I C      imp, 7 
9. C I C       dn, 8 
10. C       self, 9  

 
35. Using propositional logic, including the rules in Table 1.14, prove that each 

argument is valid.  Use the statement letters shown. 
 

If Jose took the jewelry or Mrs. Krasov lied, then a crime was committed.  Mr. 
Krasov was not in town.  If a crime was committed, then Mr. Krasov was in town.  
Therefore Jose did not take the jewelry.  (J, L, C, T) 
 
( (J I L) → C ) H T’ H ( C → T ) → J’ 
 

1. J I L → C      hyp 
2. T’       hyp 
3. C → T       hyp 
4. C’ I T      imp, 3 
5. (J I L)’ I C      imp, 1 
6. (J’ H L’) I C     DeMorgan, 5 
7. T’ H (C’ I T)     con, 2, 4 
8. (T’ H C’) I (T’ H T)    dist, 7 
9. (T’ H C’) I 0     comp, 8 
10. T’ H C’      ident, 9 
11. C’       sim, 10 
12. C’ H ( (J’ H L’) I C )    con, 11, 6 
13. (C’ H (J’ H L’)) I (C’ H C)   dist, 12 
14. (C’ H (J’ H L’)) I 0    comp, 13 
15. C’ H (J’ H L’)     ident, 14 
16. J’ H L’      sim, 15 
17. J’       sim, 16 

 



§1.3 
 
15a. Explain why the wff is valid: 
 
  (!x)(!y)A(x, y) < �!y)(!x)A(x, y) 
 
 The wff is valid because universal existence – the truth of the existence of the 

entire set of possible values for x and y – is not predicated upon order or 
sequence.  In the left-hand side of the wff, the relation A is said to be true for all x 
and all y, not just those values of x or y which meet a certain criteria – including 
criteria of order within the statement.  Therefore, the order of the existential 
qualifiers on the right-hand side of the wff may be rearranged arbitrarily, since 
they are not issuing constraints or limitations upon successive operators in left-to-
right evaluation.  This is really stating a sort of communitive property of universal 
existence: that if something is said to always exist, under all circumstances and 
conditions, then it always exists whether or not another proposition is said to be 
true, and without dependency on other extants. 

 
16d. Give interpretations to prove that each of the following wffs is not valid: 
 

(!x)[ A(x) ]’ < > �!x)A(x) ]’ 
 
 Simplify the expression: 
 

1. (!x)[A(x)]’ < >�!x)A(x)]’ 
2. (!x)[A(x)]’ < �$x)[A(x)]’ 
3. ( (!x)[A(x)]’ → ($x)[A(x)]’ ) H ( ($x)[A(x)]’ →(!x)[A(x)]’ ) 

 
Now we only have to disprove ($x)[A(x)]’ → (!x)[A(x)]’ to disprove the whole 
statement. 
 
Disproof by example: 
 

the domain is all integers 
 A(x):  x2 > x 
 A(x)’:  x2 <= x 
 ($x)[A(x)]’ is easily shown where x is zero or one (02 ≤ 0, and 12 ≤ 1). 

However, (!x)[A(x)]’ is just as easily disproven where x is 2 or –2 (22 �
2, and (-2)2 � (-2)). 

 
 Therefore, the wff is invalid, since we have shown an interpretation where 

($x)[A(x)]’ is true, yet (!x)[A(x)]’ is false. 
 



17d. Decide whether the following wff is valid or invalid.  Justify your answer. 
 

(!x)[ P(x) I Q(x) ] → (!x)P(x) I ($y)Q(y) 
 

I believe that the wff is valid.  I believe it to be probably valid because the 
consequent seems to follow logically from the antecedent.  The antecedent states 
that, for every possible x, either P or Q must be true for that x. 
 
This leaves only five possible cases: 

1. P is true for all x, while Q is false for all x (P H Q’) 
2. Q is true for all x, while P is false for all x (P’ H Q) 
3. P and Q are both true for all x (P H Q) 
4. P is true for some x, and Q is true for all other x (P # Q) 
5. P is true for some x, Q is true for some other x, and P and Q are both true 

for some x (P I Q) 
 

The antecedent is basically postulating that any of the five cases may be true.  On 
surface examination, it would appear that the consequent holds true for any of the 
five cases: 
 

1. (!x)P(x) is true in this case 
2. ($y)Q(y) is true in this case 
3. (!x)P(x)  and ($y)Q(y) are both true in this case 
4. ($y)Q(y) is true in this case 
5. ($y)Q(y) is true in this case 

 
Therefore, the wff appears to be valid, although my deductions have not been 
formulated into a conclusive proof. 

 
 



§1.4 
 
10. Either prove that the wff is a valid argument or give an interpretation in which it 

is false. 
 

(∃ x) [R(x) ∨  S(x)] → (∃ x)R(x) ∨  (∃ x)S(x) 
 
 Start by re-writing the conclusion as: 
 

[(∃ x)R(x)]’ → (∃ x)S(x) 
 

9. (∃ x) [R(x) ∨  S(x)]  hyp 
10. [(∃ x)R(x)]’   temp hyp 

a. (∀ x)R(x)’   neg, 2 
b. R(a)’    ui, 2a 
c. R(a) ∨  S(a)   ei, 1 
d. R(a)’ → S(a)   imp, 2c 
e. S(a)    mp, 2b, 2d 
f. (∃ x)S(x)   eg, 2e 

11. [(∃ x)R(x)]’ → (∃ x)S(x) temp hyp discharged 
 
14. Either prove that the wff is a valid argument or give an interpretation in which it 

is false. 
 

(!x)P(x) I ($x)Q(x) → (!x)[ P(x) I Q(x) ] 
 
 The wff would seem to be invalid, using the following interpretation: 
 

The domain is all days of the year 
P(x) = x is my birthday (Nov 20) 
Q(x) = the WTC was bombed on that day (Sep 11) 

 
This is true for the antecedent, since, although my birthday does not fall on every 
day of the year, nonetheless, and regretably, there does exist a day on which the 
WTC was bombed (Sep 11). 
 
However, the consequent is false, since it requires that every day of the year be 
either my birthday or a terrorist bombing.  Biology and cosmology make the first 
impossible, and history (and CNN) showed that the latter tragedy did not, in fact, 
reoccur indefinitely (only, as it turned out, twice). 

 
 



§2.1 
 
21. Prove the given statement: 
 

If the product of two integers is not divisible by an integer n, then neither 
integer is divisible by n. 

 
Or, stated algebraeically,  
 
 (xy|n)’ → (x|n)’ H  (y|n)’ 

 
 Proof by contraposition: 
 

((x|n)’ H  (y|n)’)’  → ((xy|n)’)’  
 

1. ((x|n)’ H  (y|n)’)’    hyp 
2. (x|n) I  (y|n)     DeMorgan, 1 
3. pick factor a such that a = x ¸ n 
4. (x = a�n) I(y|n)    subst, 2, 3 
5. pick factor b such that b = y ¸ n  
6. (x = a�n) I (y = b�n)   subst, 4, 5 
7. (xy = a�n�y) I (y = b�n)   mult both sides of left by y 
8. (xy = a�n�y) I (xy = x�b�n)  mult both sides of right by x 
9. (xy|n) I (xy|n)    def’n of a factor 
10. (xy|n)      self, 9 
11. ((xy|n)’)’     dn, 10 

 
40. Prove or disprove the given statement: 
 

For every prime number n, n + 4 is prime. 
 
 Disproof by contradiction: 
 
  2 is prime. 
  2 + 4 = 6 
  6 is not prime (divisible by 2 and 3). 
 



46. Prove or disprove the given statement: 
 
  The sum of a rational number and an irrational number is irrational. 
 
 Proof by contradiction: 
 

1. Exercise #44 proves that the sum of any two rational numbers is 
guaranteed to be rational (easily shown using basic addition of fractions). 

2. It is furthermore easily shown that, if the sum of any two rational numbers 
is rational, so then is the difference of any two rational numbers (since any 
rational number p/q can be multiplied by the rational number –1/1, and 
then the additive proof can be confirmed). 

3. Pick arbitrary rational and irrational numbers R and I. 
4. Let their sum be S, ie S = I + R 
5. Assume that S is rational 
6. From this assumption, S – R should equal I, our irrational number. 
7. However, from step #2, the difference S – R should be a rational number, 

not irrational.  Steps #3 and #6 represent a contradiction: I is defined as 
being irrational, yet is found to be equal to a difference which has been 
proven to always be rational. 

8. Therefore, the hypothesis in step 5 must be false. 
 
47. For the following exercise, use the accompanying figure and the following facts 

from geometry: 
1. The interior angles of a triangle sum to 180º 
2. Vertical angles (opposite angles formed when two lines intersect) are the 

same size 
3. A straight angle is 180º 
4. A right angle is 90º 

1

2

3 4

6 5

 
Prove that the measure of A4 is the sum of A1 and A2. 

 
1. A3 + A4 = 180º   rule #3 
2. A1 + A2 + A3 = 180º  rule #1 
3. A4 = 180º – A3   subtr, 1 
4. A1 + A2 = 180º – A3  subtr, 2 
5. A1 + A2 = A4   subst, 3, 4 



 
§2.2 
 
10. Use mathematical induction to prove that the statement is true for every positive 

integer n. 
 

30

)133)(12)(1(
21

2
444 −+++=+++ nnnnn

n�  

To prove this via the 1st principle of mathematical induction, we must complete 
the following sub-proofs: 
 

3. prove P(1) 
4. assuming P(k), prove P(k+1) 

 
Direct proof of #1: 
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Direct proof of #2: 
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37. Prove that the statement is true for every positive integer. 
 

732 +n is divisible by 8. 
 

To prove this via the 1st principle of mathematical induction, we must complete 
the following sub-proofs: 
 

5. prove P(1) 
6. assuming P(k), prove P(k+1) 

 
Direct proof of #1: 

 

true

x

x

x

x

x

=
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Direct proof of #2: 

 

true
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§2.3 
 
4. Prove that the pseudocode program segment is correct by proving the loop 

invariant Q and evaluating Q at loop termination. 
 

Function to compute and write out quotient q and remainder r when x is divided 
by y, x � �� y � � 
 
Divide( nonnegative integer x; positive integer y ) 

Local variables: 
 nonnegative integers q, r 
q = 0 
r = x 
while r � y do 
 q++ 
 r -= y 
end while 
// q and r are now the quotient and remainder 
write( “The quotient is %d and the remainder is %d”, q, r ) 

end function Divide 
 

Q: x = q � y + r 
 

Attempt to prove the algorithm is correct using the loop rule of inference. 
 
To do that, we must pick a Q, and prove it is a loop invariant.  Then the loop 
rule of inference will allow us to state that Q ^ B’ will be true after the loop.  
Q ^ B’ should be chosen such that, together, they state “j = x – y”. 
 
Let Q equal “x = q � y + r” 
Let B equal “r � y” 
 
Attempt to prove Q is a loop invariant: 
 

Let Q(n) equal “x = qn � y + rn” 
 
Prove Q(0): 
 

8. x = q0 � y + r0 
9. x = 0 � y + x 
10. x = x 
11.  Q(0) is true 
 

Assume Q(k): x = qk � y + rk 
 



 Prove Q(k+1): x = qk+1 � y + rk+1 
 

9. x = qk � y + rk   hyp 
10. qk+1 = qk + 1    algorithm 
11. rk+1 = rk – y    algorithm 
12. qk = qk+1 – 1     subtraction, 2 
13. rk = rk+1 + y     addition, 3 
14. x = (qk+1 – 1) � y + rk   substitution, 1, 4 
15. x = (qk+1 – 1) � y + rk+1 + y  substitution, 6, 5 
16. x = qk+1 � y – y + rk+1 + y  dist. mult, 7 
17. x = qk+1 � y + rk+1    target 
18.  Q(k+1) is true 

 
We have proven that Q is a loop invariant. 
 
Therefore, upon loop termination, the assertion Q ∧  B’ must be true, ie: 
 
 (x = q � y + r) ∧  (r < y) 
 
Combining those statements yields: 
 
 x = q � y + r 
 

Therefore, the algorithm is provably correct. 
 

 
5. Use the Euclidean algorithm to find the greatest common divisor of the given 

numbers: 
 
  (2420, 70) 

 

34

40

2380

242070  
1

30

40

7040  
1

10

30

4030  
3

0

30

3010  

 
GCD = 10 

 



§2.4 
 
5. Write the first five values in the sequence: 
 

T(1) = 1 
T(n) = n � T(n – 1)    for n � � 

 
n T(n) 
1 1 
2 2 
3 6 
4 24 
5 120 
6 720 
7 5,040 
8 40,320 
9 362,880 

10 3,628,800 
 
29. Prove the given property of the Fibonacci numbers directly from the definition. 
 
 F(n+6) = 4F(n+3) + F(n)      for n � � 
  

1. F(n+6) = F(n+4) + F(n+5)    def 
2. F(n+5) = F(n+3) + F(n+4)    def 
3. F(n+4) = F(n+2) + F(n+3)    def 
4. F(n+3) = F(n+1) + F(n+2)    def 
5. F(n+2) = F(n) + F(n+1)    def 
6. F(n+6) = F(n+2) + F(n+3) + F(n+3)+F(n+4)  subst 2, 3 into 1 
7. F(n+6) = 2F(n+3) + F(n+2) + F(n+4)   simplify, 6 
8. F(n+6) = 2F(n+3) + F(n+2) + F(n+2) + F(n+3) subst 3 into 7 
9. F(n+6) = 3F(n+3) + F(n+2) + F(n+2)   simplify, 8 
10. F(n+6) = 3F(n+3) + F(n+2) + F(n) + F(n+1)  subst 5 into 9 
11. F(n+6) = 3F(n+3) + F(n+3) + F(n)    subst 4 into 10 
12. U F(n+6) = 4F(n+3) + F(n)    simplify 

 
52. Write the body of the recursive function to compute S(n) for the given sequence S. 

1, 3, 9, 27, 51, … 
LQW 6� LQW Q � ^

LI� Q � � � ^
ISULQWI� VWGHUU� ´6�Q� QRW GHILQHG IRU Q � �µ ��
H[LW���

` HOVH LI� Q   � � ^
UHWXUQ ��

` HOVH ^
UHWXUQ � 
 6�Q����

`
`



 
78. In an account that pays 8% annually, $1000 is deposited.  At the end of each year, 

an additional $100 is deposited into the account.  What is the account worth at the 
end of 7 years (that is, at the beginning of the 8th year)? 

 
Year Balance 

1 1,000.00 
2 1,180.00 
3 1,374.40 
4 1,584.35 
5 1,811.10 
6 2,055.99 
7 2,320.47 
8 2,606.10 

 
 
§3.1 
 
43. An internet search engine has the following set of URL references in its database: 
 
  A = automobiles for sale 
  with subsets: 
   B = used cars 

  C = Fords 
D = Buicks 
E = pre-1995 models 

 
You want to search for all references to used Fords or Buicks that are 1995 
or later models. 
 
Write the set expression that represents your query. 

 
Obviously, this query isn’t sufficiently precise to be converted into set notation.  
There are at least three likely interpretations of the query, each resulting in 
different equations: 
 
�XVHG �)RUGV RU %XLFNV� WKDW DUH ���� RU ODWHU�

  B ã (C ä D) ã E 
 

���XVHG )RUGV� RU %XLFNV� WKDW DUH ���� RU ODWHU�

  ( ( B ã C ) ä D ) ã E 
 

��XVHG )RUGV� RU �%XLFNV WKDW DUH ���� RU ODWHU�� 
  ( B ã C ) ä ( D ã E ) 
 



47. Prove that  
 

A § ( A ä B ) 
 
  where A and B are arbitrary sets. 
 

1. A      hyp 
2. B      hyp 
3. t      ui 
4. ( t + A ) I (t + B ) < W + ( A ä B )  def’n union 
5. t + A      temp hyp 

a. t + ( A ä B )     mp, 4, 5 
6. t + A : W + ( A ä B )    temp hyp discharged 
7. (!x) ( x + A : x + ( A ä B ) )  ug, 6 
8. A § ( A ä B )     def’n subset 

 
59c. A, B, and C are subsets of a set S.  Prove the following set identities by using 

previously proved identities, including those in Exercises 56-58 [and on p171]. 
 

( A – B ) – C = ( A – C ) – B  
 

1.  ( A – B ) – C     starting point 
2. ( A J B’ ) – C    def’n set diff 
3. ( A J B’ ) J C’    def’n set diff 
4. A J ( B’ J C’ )    assoc (p171 2b) 
5. A J ( C’ J B’ )    comm (p171 1b) 
6. ( A J C’ ) J B’    assoc (p171 2b) 
7. ( A J C’ ) – B    def’n set diff 
8. ( A – C ) – B     def’n set diff 

 
59e.  A, B, and C are subsets of a set S.  Prove the following set identities by using 

previously proved identities, including those in Exercises 56-58 [and on p171]. 
 

( A – B ) – C = ( A – C ) – ( B – C ) 
 

Well, I tried proving this until my hair turned grey, and couldn’t figure it out.  
Finally I turned the quivalence around, and found that much easier to show.  Since 
equivalence is bidirectional, the following proof is sufficient: 



 
1. ( A – C ) – ( B – C )     starting point 
2. ( A @ C’ ) – ( B – C )    def set sub, 1 
3. ( A @ C’ ) – ( B @ C’ )    def set sub, 2 
4. ( A @ C’ ) @ ( B @ C’ )’    def set sub, 3 
5. ( A @ C’ ) @ ( ( B @ C’ )’ )’   dn, 4 
6. ( A @ C’ ) @ ( B’ ä C )    DeMorgan (56b), 5 
7. ( ( A @ C’ ) @ B’ ) ä ( ( A @ C’ ) @ C )  dist, 6 
8. ( A @ ( C’ @ B’ ) ) ä ( A @ ( C’ @ C ) )  assoc, 7 
9. ( A @ ( C’ @ B’ ) ) ä ( A @ & )   comp, 8 
10. ( A @ ( C’ @ B’ ) ) ä  &    58c, 9 
11. ( A @ ( C’ @ B’ ) )     4a, 10 
12. ( A @ ( B’ @ C’ ) )    comm, 11 
13. ( ( A @ B’ ) @ C’ )    assoc, 12 
14. ( A @ B’ ) – C     def set sub, 13 
15. ( A – B ) – C     def set sub, 14 

 
59f. A, B, and C are subsets of a set S.  Prove the following set identities by using 

previously proved identities, including those in Exercises 56-58 [and on p171]. 
 

A – ( A – B ) = A J B 
 

1. A – ( A – B )     starting point 
2. A – ( A J B’ )    def’n set diff 
3. A J ( A J B’ )’    def’n set diff 
4. A J ( A’ K B )    DeMorgan 
5. ( A J A’ ) K ( A J B )   dist 
6. & K ( A J B )    comp (5b) 
7. A J B      ident (4a) 

 
 
§3.2 
 
22. A customer at a fast-food restaurant can order a hamburger with or without 

mustard, ketchup, pickle, or onion; a fish sandwich with or without lettuce, 
tomato, or tartar sauce; and a choice of three kinds of soft drinks or two kinds of 
milkshakes.  How many different orders are possible if a customer can order at 
most one hamburger, one fish sandwich, and one beverage, but can order less? 

 
Scratch: 
 {0,1} hamburger (M, K, P, O) = 2^4 opts = 16 opts = 17 choices (incl 

none) 
 {0,1} fish (L, T, S) = 2^3 opts = 8 opts = 9 choices (incl none) 
 {0,1} drink (S1 or S2 or S3 or M1 or M2) = 6 choices (incl none) 
 



Total: 17 * 9 * 6 = 918 
 
§3.3 
 
6. From the 83 students who want to enroll in CS 320, 32 have completed CS 120, 

27 have completed CS 180, and 35 have completed CS 215.  Of these, 7 have 
completed both CS 120 and CS 180, 16 have completed CS 180 and CS 215, and 
3 have completed CS 120 and CS 215.  Two students have completed all three 
courses.  The prerequisite for CS 320 is completion of one of CS 120, CS 180, or 
CS 215.  How many students are not eligible to enroll? 

 
A = “completed CS 120” 
B = “completed CS 180” 
C = “completed CS 215” 
W = “want to take CS 320” 
 
|W|  = 83 
 
|A|  = 32 
|B|  = 27 
|C|  = 35 
|A J B| = 7 
|B J C| = 16 
|A J C| = 3 
|A J B J C| = 2 

 
Total number of students who have taken A, B, or C (and are thus eligible for CS 
320) can be determined using the 3-set version of the Principle of Inclusion and 
Exclusion: 
 
|A K B K C| = |A| + |B| + |C| – |A J B| – |B J C| – |A J C| + |A J B J C|  
|A K B K C| = 32 + 27 + 35 – 7 – 16 – 3 + 2 
|A K B K C| = 59 + 35 – 26 + 2 = 95 – 25 = 70 
 
Total NOT able to enroll = |W| – |A K B K C| 

83 – 70 
13 losers 

 
7. Among a bank’s 214 customers with checking or savings accounts, 189 have 

checking accounts, 73 have regular savings accounts, 114 have money market 
savings accounts, and 69 have both checking and regular savings accounts.  No 
customer is allowed to have both regular savings accounts and money market 
savings accounts. 

 



 a. How many customers have both checking and money market savings 
accounts? 

93 
 b. How many customers have a checking account but no savings account? 
     16 
 Scratch: 

 
P = people (customers) 
A = checking accounts 
B = regular savings accounts 
C = money market savings accounts 
 
|P|  = 214 
|A|  = 189 
|B|  = 73 
|C|  = 114 
|AJB|  = 69 
|BJC|  = 0 (by rule) 
|AJC|  = 93 (see proof, below) 
|AJBJC| = 0 (by implication; B J C is already &)/ 
 
a.  Find |AJC| 
 
|A K B K C| = |A| + |B| + |C| – |A J B| – |B J C| – |A J C| + |A J B J C|  
214 = 189 + 73 + 114 – 69 – 0 – |AJC|  + 0 
|AJC| = 189 + 73 + 114 – 69 – 214 
|AJC| = 93 
 
b.  Find |A – ( B K C )| 
A – ( B’ J C’ )’ 
A – ( B’ – C )’ 
189 – ( 141 – 100 )’ 
189 – ( 41 )’ 
189 – 173 
16 

 
§3.4 
 
2. How many batting orders are possible for a nine-man baseball team? 
 
  9! = 362,880 
 



58. In a 5-card hand from a standard 52-card deck, how many ways are there to have 
exactly 3 jacks and 2 hearts? 

 
 Ways to have 3 jacks:  

4 (four suits, one of which is missing from each possibility, equals C(4,3)) 
 
 Ways to have 2 hearts: 
  C(13, 2) including the jack, or C(12, 2) if the jack is already in play 
 

Combining these possibilities with the specifications “5-card hand” and “exactly 
three jacks”, we see that we can never count the Jack of Hearts as one of the two 
hearts, because then we would either have four jacks (J�-J�-J�-J�-x�) or only 
four cards (JS1-JS2-J�-x�).  
 
Likewise, it would seem that we can never use the Jack of Hearts as a Jack.  If we 
did, then either we would have three hearts (ie, J�-J�- J�-x�-y�), or only four 
cards.  This would mean that the number of ways to arrive at exactly 3 jacks 
would be exactly ONE: J�-J�-J�� 
 
Note that I have deliberately discounted the case in which the Jack of Hearts is 
counted as both a Jack and a Heart, by filling out the hand with a fifth card which 
is neither a Jack nor a Heart, ie J�-J�-J�-Q�-7�� 8QGHU RQH LQWHUSUHWDWLRQ RI WKH

question, that is a “5-card hand from a standard 52-card deck…[with] ‘exactly’ 3 
jacks and 2 hearts.”  
 
It is ironic that, in this context, it is the term “exactly” which is itself ambiguous: 
does this mean that “there should be no more or less than 3 jacks, and no more or 
less than 2 hearts, but no other constraints are imposed [other than the 5-card 
requirement]”; or does it mean, “the hand should be composed exclusively of 3 
jacks and 2 hearts, with no cards other than jacks or hearts in the hand at all?”  I 
have chosen to use the second interpretation; other interpretations may yield 
different results. 
 
Therefore, the total should be (to my thinking): 
 

JackCombinations � HeartCombinations 



66

116
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68. At a birthday party, a mother serves a cookie to each of 8 children.  There are 

plenty of chocolate chip, peanut butter, and oatmeal cookies. 
 

a. In how many ways can each child get one cookie?  (We don’t care which 
child gets which kind.) 

 
 n = 3 
 r = 8 

C( 8+3-1, 8 ) 
45 
 

b. In how many ways can each child get one cookie if at least one of each 
kind of cookie is given out? 

 
 n = 3 
 r = 5 

C( 5+3-1, 5 ) 
 21 
 
c. In how many ways can each each child get one cookie if no one likes 

oatmeal cookies? 
  
 n = 2 
 r = 8 

C( 8+2-1, 8 ) 
 9 
  
d. In how many ways can each child get one cookie if two children insist on 

getting peanut butter? 
 
 n = 3 
 r = 6 

C( 6+3-1, 6 ) 
 28 



 
e. In how many ways can each child get one cookie if there are only two 

chocolate chip cookies? 
 

 n = 2   n = 3 
 r = 6   r = 2 

C( 6+2-1, 6 ) + C( 2+3-1, 2 ) 
  7   +  6 
  13 
 



§3.5 
 
1g. Expand the expression using the binomial theorem: 

 

432234

4031221304
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Read chapter 7 and complete the following problems: 
6.1: 2, 4, 6, 22 
6.2: 4, 11, 16, 25 
6.3: 2, 18 
6.4: 8, 12, 18, 23, 26 
6.5: 2, 6, 8 
 



Section 6.1 
 
2. Find the adjacency matrix and adjacency relation for the graph in the figure. 
 

1

2 4

3

 
ρ = { (1, 3), (2, 3), (3, 4), (4, 4) } 

 
    
0 0 1 0 
0 0 1 0 
0 0 0 1 
0 0 0 1 

 
 
 
4. Find the corresponding directed graph and adjacency relation for the following 

adjacency matrix. 
 

     
0 0 0 0 0 
1 0 0 0 1 
0 1 0 1 0 
0 1 0 0 0 
0 0 0 1 0 

 
 

1

2

4

35

 
ρ = { (2, 1), (2, 5), (3, 2), (3, 4), (4, 2), (5, 4) } 

 



6. Given the adjacency relation ρ = { (2, 1), (3, 2), (3, 3), (3, 4), (4, 5), (6, 3), (6, 6) } 
on the set  N = { 1, 2, 3, 4, 5, 6 }, find the corresponding directed graph and 
adjacency matrix. 

 

1

2 4

3

5
6

 
      
0 0 0 0 0 0 
1 0 0 0 0 0 
0 1 1 1 0 0 
0 0 0 0 1 0 
0 0 0 0 0 0 
0 0 1 0 0 1 

 
 
 
22. Compute the reachability matrix R for exercise 6 by using the formula: 

R = A ∨ A(2) ∨  
� ∨ A(n) 

 
      
0 0 0 0 0 0 
1 0 0 0 0 0 
1 1 1 1 1 0 
0 0 0 0 1 0 
0 0 0 0 0 0 
1 1 1 1 1 1 

 
 
 



Section 6.2 
 
4. Determine whether the graph in the specified figure has an Euler path by using the 

theorem on Euler paths. 
 

1 2

4

3

5 6
 

 No, the graph cannot have an Euler path, because there are four odd nodes (2, 4, 
5, and 6).  By the theorem, the graph can only have an Euler path if the count of 
odd nodes is either zero or two. 

 
11. Draw the adjacency matrix for the graph of Exercise 4.  In applying algorithm 

EulerPath, what is the value of total after the fourth pass through the while loop? 
 

      
0 0 0 1 1 0 
0 0 0 1 1 1 
0 0 0 0 1 1 
1 1 0 0 1 0 
1 1 1 1 0 1 
0 1 1 0 1 0 

 
 
 After the fourth pass through the loop, total equals “2”. 
 
16. Decide by trial and error whether a Hamiltonian circuit exists for the graph of 

exercise 4. 
 

Yes, there are numerous Hamiltonian circuits to traverse the graph, including: 
1-4-2-5-3-6 
1-5-3-6-2-4 
etc 

 



25. Is it possible to walk in and out of each room in the house, shown in the 
accompany figure, so that each door of the house is used exactly once?  Why or 
why not? 

 

 
 

If we label the rooms of the house, as well as the surrounding “lawn” (or 
“sidewalk” for you urbanites), then we have the following figure: 
 

$

% & '

( ) *

 
 

This figure can be represented with the following graph, with nodes representing 
rooms (or the lawn), and arcs indicating doors: 

C F G

B A D

E

 
By Euler’s theorem, we could traverse this graph (walk through the house), 
tracing every arc (passing through every door) exactly once, if and only if the 
number of odd nodes (rooms) is zero or two. 
 
However, looking at this graph, we see that there are four “odd” nodes (A, B, E, 
and F). 
 
Therefore, the house cannot be walked in the manner described. 

 
 



Section 6.3 
 
2. Using the accompanying graph, apply algorithm ShortestPath (Dijkstra’s 

algorithm) for a path from node 3 to node 6.  Show the values for p and IN and the 
d-values and s-values for each pass through the while loop.  Write out the nodes 
in the shortest path and its distance. 

2
3 5

6

7

8

4

1

1 4

2 1

2 1 5 6

5
3 1

8

1

 
 Pass 0:  

IN = {3}   
 1 2 3 4 5 6 7 8 
d 5 2 � 1 � � � 2 
s 3 3 - 3 - - - 3 

 
 Pass 1:  

p = 4 
IN = {3, 4} 

 1 2 3 4 5 6 7 8 
d 5 2 2 1 5 � � 2 
s 3 3 4 3 4 - - 3 

 
 Pass 2:  

p = 2 
IN = {2, 3, 4} 

 1 2 3 4 5 6 7 8 
d 5 2 2 1 5 � 3 2 
s 3 3 4 3 4 - 2 3 

 
 Pass 3:  

p = 8 
IN = {2, 3, 4, 8} 

 1 2 3 4 5 6 7 8 
d 5 2 2 1 3 � 3 2 
s 3 3 4 3 8 - 2 3 

 
  

Pass 4:  
p = 7 
IN = {2, 3, 4, 7, 8} 

 1 2 3 4 5 6 7 8 
d 5 2 2 1 3 8 3 2 
s 3 3 4 3 8 7 2 3 

 
 Pass 5:  

p = 5 
IN = {2, 3, 4, 5, 7, 8} 

 1 2 3 4 5 6 7 8 
d 5 2 2 1 3 8 3 2 
s 3 3 4 3 8 7 2 3 

 
 Pass 6:  

p = 1 
IN = {1, 2, 3, 4, 5, 7, 8} 

 1 2 3 4 5 6 7 8 
d 5 2 2 1 3 6 3 2 
s 3 3 4 3 8 1 2 3 

 
 Pass 7:  

p = 6 
IN = {1, 2, 3, 4, 5, 6, 7, 8} 

 1 2 3 4 5 6 7 8 
d 5 2 2 1 3 6 3 2 
s 3 3 4 3 8 1 2 3 



 Shortest path: 3 – 1 – 6 
 distance: 2 hops 
 cumulative weight: 6  



18. Find a minimal spanning tree for the graph in the specified figure. 
 
 

1

2

5

8

4

7

3

6

9

2

3

4

1

2

1

1

3

3

2

1

22

  

1

2

5

8

4

7

3

6

9

2

3

4

1

2

1

1

3

3

2

1

22

 
 

 

Section 6.4 
 
8. Write the nodes in a depth-first search of the graph in the accompanying figure, 

beginning with the node e. 
 

a

b cd

e f g

h i j

k  
 

e-i-k-h-b-d-c-a-f-j-g 
 
 



12. Write the nodes in a breadth-first search of the graph in the accompanying figure, 
beginning with the node c. 

a

b
c

d

e f

g h

i

j  
c-f-b-e-a-d-h-g-j-i 

 
18. Write the nodes in a breadth-first search of the graph in the accompanying figure, 

beginning with the node e. 
a

b cd

e f g

h i j

k  
e-b-d-i-h-c-a-k-f-g-j 

 
23. Write the nodes in a depth-first search of the graph in the accompanying figure, 

beginning with the node f. 

a

b

c

d

ef

h

g

 
f, b 



26. Write the nodes in a breadth-first search of the graph in the accompanying figure, 
beginning with the node f. 

a

b

c

d

ef

h

g

 
f, b 

 

Section 6.5 
 
2. Draw the depth-first search trees, where node a is the starting node of the depth-

first search.  Identify the back arcs. 

a

b c

d

e
f

g h i   

a

b c

d

e
f

g h i
 

back arcs: e-a, b-e, d-c 
 
6 Draw the depth-first search trees, where node a is the starting node of the depth-

first search.  Identify the back arcs. 

a b c d

e

f

g

h

 a b c d

e

f

g

h

 
 

back arcs: a-b, g-c 



8. Use algorithm ArtPoint to find the articulation points.  Label TreeNumber and 
BackNumber for each node, both as first assigned and as changed.  Draw the 
biconnected components of the graph. 

a b

c

d e

1

2 3

4 5

6
 

a (3, 3) b (2, 2)

c (1, 1)

d (5, 5) e (4, 4)

1

2 3

4 5

6

1 1

1 1

 
 

visited:  c, b, a, e, d 
tree edges: 3, 1, 5, 6 
stdout:  c is an articulation point 
  c is an articulation point 

Biconnected 
components: 

 a b 

d  e c 

c 
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Complete the following problems to hand in: 
8.2: 2a, 2c, 4, 8, 23a, 24b, 25e, 35 
8.3: 2, 4, 13 
8.4: 7, 13, 20a 



Section 8.2 
 
2. 

a. For the machine described in Exercise 1(a), find all input sequences yielding an output 
sequence of 0011110. 

 

s0/� s1/� s2/�

s3/� s4/�

�

�

��

�

�

�

�
�

�

 
 
input: 11(101∨ 010)0(0∨ 1) 
 POSIX: /^11(101|010)0[01]$/ 
 

c. For the machine described in Exercise 1(c), what will be the output for an input sequence 
a1 a2 a3 a4 a5 where ai +{0,1}, 1 � i � �" 

s0/� s1/� s2/�

s3/�

�

�

�

�

�

�

�

�

 
 
output: 0a1 a2 a3 a4 a5  where ai  +{0,1}, 1 � i � � 
 POSIX: /^0[01]{5}$/ 
 



4. Write the state table for the machine, and compute the output sequence for the given input 
sequence. 

 
  1101100 
 

s0/� s1/� s2/�

s3/�

�

�

�

�

�

�

�

�

 
State table: 
 

Next State 

Present State 
Present 
0 

Input 
1 Output 

s0 s3 s0 1 
s1 s2 s0 0 
s2 s2 s1 1 
s3 s1 s2 0 

 
Output: 
 
 11101011 

 
8. Draw the state graph for the machine, and compute the output sequence for the given input 

sequence. 
 
  0011 
 

Next State 

Present State 
Present 
0 

Input 
1 Output 

s0 s2 s3 0 
s1 s0 s1 1 
s2 s1 s3 0 
s3 s1 s2 1 

 



State diagram: 

s0/0

s2/0

s3/1

1

0
1

0

0

s1/1 1

01

 
Output: 
 
 00111 

 
23a. Give a regular expression for the set recognized by the finite-state machine in the accompanying 

figure. 
 

s0 s1 s2

s3

�

�

�

�

�

�

���

 
Recognized input strings: 
 

1*000* 
POSIX: /^1*00+$/ 

 



24b. Give a regular expression for the set recognized by each finite-state machine in the accompanying 
table. 

 
Next State 

Present State 
Present 
0 

Input 
1 Output 

s0 s3 s1 1 
s1 s1 s2 1 
s2 s2 s2 0 
s3 s0 s2 0 

 
Recognized input strings: 

(00)* ∨  (00)*10* 
POSIX: /^(00)*(10*)?$/ 

 
25e. Give a regular expression for the following set: 

set of all strings of a’s and b’s where each a is followed by two b’s 
 
Recognized input strings: 

  (b*(abb)*b*)* 
POSIX: /^(b*(abb)*b*)*$/ 

 
35. Minimize M. 
 

Next State 

Present State 
Present 
0 

Input 
1 Output 

0 5 3 1 
1 5 2 0 
2 1 3 0 
3 2 4 1 
4 2 0 1 
5 1 4 0 

 
0-equivalent states: {0, 3, 4}, {1, 2, 5} 
1-equivalent states: {0, 3, 4}, {1}, {2, 5} 
 
No further refinement is possible.  Let: 
 A = {0, 3, 4} 
 B = {1} 
 C = {2, 5} 
 
Reduced machine M’: 

 
Next State 

Present State 
Present 
0 

Input 
1 Output 

A C A 1 
B C C 0 
C B A 0 

 
 
 



Section 8.3 
 
2. Given the Turing machine: 
 

(0, 1, 1, 0, R) 
(0, 0, 0, 1, R) 
(1, 1, 1, 1, R) 
(1, b, 1, 2, L) 

(2, 1, 1, 2, L) 
(2, 0, 0, 2, L) 
(2, b, 1, 0, R) 

 
 a. What is its behavior when started on the tape: 

« E � � � � E «

« E � � � � E «

↑
�

« E � � � � E «

↑
�

« E � � � � E «

↑
�

« E � � � � E «

↑
�
KDOW

 b. What is its behavior when started on the tape: 
 

« E � � � E «

« E � � � E «
↑
�

« E � � � E «
↑
�

« E � � � E «
↑
�

« E � � � E «
↑
�

« E � � � � E «
↑
�

« E � � � � E «
↑
�

« E � � � � E «
↑
�

« E � � � � E «
↑
�

« E � � � � � E «
↑
�

« E � � � � � E «
↑
�

« E � � � � � E «
↑
�

« E � � � � � E «
↑
�

« E � � � � � E «
↑
�

« E � � � � � � E «
↑
�

 
…and so on.  The Turning machine does not recognize the pattern 101. 



4. Find a Turing machine that recognizes the set of all 0s and 1s containing at least one 1. 
 
  (0, 0, 0, 0, R) 
  (0, 1, 1, 1, R) 
  (1, 0, 0, 1, R) 
  (1, 1, 1, 1, R) 
  (1, b, b, 2, R) 
   
13. Find a Turing machine that, given an initial tape containing a nonempty string of 1s, marks the 

right end of the string with a * and puts a copy of th estring to the right of the *.  As an example, 
the machine should, when started on a tape containing: 

 
« E � � � E «

 
halt on a tape containing: 
 

« E � � � 
 � � � E «

 
(0, 1, 1, 0, R) 
(0, b, *, 1, L) 

(1, 1, α, 2, R) 
(1, *, *, 1, L) 
(1, α, α, 1, L) 
(1, b, b, 3, R) 

(2, α, α, 2, R) 
(2, *, *, 2, R) 
(2, b, α, 1, L) 

(3, α, 1, 3, R) 
(3, *, *, 3, R) 
(3, b, b, 4, R) 

 

Section 8.4 
 
7. Find a grammar that generates the set of all strings of well-balanced parentheses. 
 

G = ( V, VT, S, P ), where 
 

V = { (, ), S, A } 
VT = { (, ) } 
 
P consists of: 

S → A 
A → () 

A → (A) 
A → AA 

 
13. Find a context-free grammar that generates the language L where L consists of the set of all 

nonempty strings of 0s and 1s with twice as many 0s as 1s. 
 

G = ( V, VT, S, P ), where 
 

V = { 0, 1, S, A, B } 
VT = { 0, 1 } 
 
P consists of: 

S → BBA 
S → BAB 
S → ABB 

A → 1 
A → 1S 

B → 0 
B → 0S 



 



20a. The following is the pumping lemma for context-free languages.  Let L be any context-free 
language.  Then there exists some constant k such that for any word w in L with |w| � k, w can be 
written as the string w1w2w3w4w5  with |w2w3w4| � k and |w2w4| � ��  Furthermore, the word 
w1wi

2w3wi
4w5 +L for each i � �� 

 
Use the pumping lemma to show that L = {anbncn | n � �` LV QRW FRQWH[W IUHH� 

 
1. Let L = {anbncn | n � �` 
2. Assume L is context-free     hyp 
3. Pick an arbitrary integer constant k 
4. Pick a word w from L such that n > k  
5. w =  w1w2w3w4w5      pumping lemma, 2, 4 
6. |w2 w3 w4| � k      pumping lemma, 2, 5 
7. |w2 w4| � �      pumping lemma, 2, 5 
8. for any word in L, there are n b’s between the last a and 1st c (1) 
9. w2w3w4 can match a+, a+b+, b+, b+c+, or c+, but not a+b+c+ (4), (6), (8) 
10. w2 w3 w4 cannot have both a’s and c’s   (9) 
11. w2 w4 cannot have both a’s and c’s    (10) 
12. Pick an arbitrary integer i where i > 1 
13. Let w’ = w1 w

i
2 w3 w

i
4 w5  

14. w’ +L       pumping lemma 
15. |w’| > |w|       (7), (12), (13) 
16. w’ couldn’t have added equal numbers of a’s and c’s to w (11), (13) 
17. w’ doesn’t have an equal number of a’s and c’s  (16) 
18. w’ *L       (17), (1) 
19. contradiction      (14), (17) 
20. ∴  L = {anbncn | n � �` LV QRW FRQWH[W IUHH 

 


